Aircraft Flight Manual

Doc. No. 2006/044 4th Edition – Rev. 5 2018, January 12th

TECNAM P2006T

MANUFACTURER: COSTRUZIONI AERONAUTICHE **TECNAM** S.r.I. AIRCRAFT MODEL: **P2006T** EASA TYPE CERTIFICATE NO: A.185 (DATED 2009, JUNE 5^{TH})

SERIAL NUMBER:

BUILD YEAR:

REGISTRATION MARKINGS:

This Aircraft Flight Manual is approved by European Aviation Safety Agency (EASA).

This Manual contains information required by the FAA to be furnished to the pilot for operation in the U.S.A. plus information supplied by the manufacturer. It is approved by EASA on behalf of the FAA per FAR 21.29.

This Manual must be carried in the airplane at all times. The airplane has to be operated in compliance with procedures and limitations contained herein.

Costruzioni Aeronautiche **TECNAM** srl Via Maiorise CAPUA (CE) – Italy Tel. +39 (0) 823.62.01.34 WEB: <u>www.tecnam.com</u>

SECTION 0

INDEX

1.	RECORD OF REVISIONS	3
2.	LIST OF EFFECTIVE PAGES	7
3.	FOREWORD	10
4.	SECTIONS LIST	11

Aircraft Flight Manual

INDEX

1. RECORD OF REVISIONS

Any revision to the present Manual, except actual weighing data, is recorded: a Record of Revisions is provided at the front of this manual and the operator is advised to make sure that the record is kept up-to-date.

The Manual issue is identified by Edition and Revision codes reported on each page, lower right side.

The revision code is numerical and consists of the number "0"; subsequent revisions are identified by the change of the code from "0" to "1" for the first revision to the basic publication, "2" for the second one, etc.

Should be necessary to completely reissue a publication for contents and format changes, the Edition code will change to the next number ("2" for the second edition, "3" for the third edition etc).

Additions, deletions and revisions to existing text will be identified by a revision bar (black line) in the left-hand margin of the page, adjacent to the change.

When technical changes cause expansion or deletion of text which results in unchanged text appearing on a different page, a revision bar will be placed in the right-hand margin adjacent to the page number of all affected pages providing no other revision bar appears on the page.

These pages will be updated to the current regular revision date.

NOTE: It is the responsibility of the owner to maintain this handbook in a current status when it is being used for operational purposes.

Rev	Revised	Description of	Tecn	am Appro	oval	EASA Approval or Under DOA	
IXU V	page	Revision	DO	OoA	HDO	Privileges	
0	-	First issue	D. Ronca	M. Oliva	M. Oliva		
	0-4,8	Amended ROR and LOEP				Approved under the au-	
1	6-12	Amended Equipment List	D. Ronca	D. Ronca	M. Oliva	M. Oliva	thority of DOA, ref. EASA.21J.335
	9-1,2,5,7	Amended Supplement List				(MOD2006/270.160429)	
	0-4,8	Amended ROR and LOEP		D. Ronca M. Oliva			
2	4-3,4,18,19	Amended General recommendations and "Prior to Takeoff" procedure	D. Ronca		M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335 (MOD2006/290.170316)	
	5-16	Amended Cruise performances					
	9-1,2,4,5,7	Amended Supplement List Index					
	0-1,4,7	Amended cover page, ROR and LOEP	A. Sabino		M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335 (MOD2006/315.170901)	
3	6-11, 12, 13	Amended Equipment List		C. Caruso			
	9-2,3,8	Amended Supplement List, Modi- fied Introduction,					
	0-1,4,7, 12	Amended cover page, ROR and LOEP. Blank page added.	A. Sabino				
4	4-3,11,16, 17,19,20,25	Amended "Pre-flight", "Engine starting", "Prior to takeoff" and "Parking/Shut down" checklists		A. Sabino	A. Sabino C. Caruso	M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335
	5-23	Blank page removed				(MOD2006/318.171205)	
	6-11, 12, 13	Amended Equipment List					
	0-1,4,7,12	Amended cover pages, ROR and LOEP. Blank page added.	A. Sabino	A. Sabino			
	2-11	Amended caution on supplemental oxygen use.					
5	2-12	Integration of info formerly con- tained in Supp. A27, G16, G18.			C. Caruso	so M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335 (MOD2006/325.180112)
	4-19,22	Amended procedures.					
-	6-11,12,13	Amended equipment list.					
	9-all	Amended Supplement List.					

RECORD OF REVISIONS

2. LIST OF EFFECTIVE PAGES

The List of Effective Pages (LOEP), applicable to manuals of every operator, lists all the basic AFM pages: each manual could contain either basic pages or one variant of these pages when the pages of some Supplements are embodied.

Should the Supplements be embodied in accordance with approved instructions, make reference to the LOEP addressed on the Supplements themselves.

Ed 1 Rev 0	May 25, 2009
Ed 2 Rev 0	March 29, 2010
Ed 2 Rev 1	April 27, 2010
Ed 2 Rev 2	November 12, 2010
Ed 2 Rev 3	March 4, 2011
Ed 3 Rev 0	December 22, 2011
Ed 3 Rev 1	October 15, 2012
Ed 3 Rev 2	June 4, 2013
Ed 3 Rev 3	February 13, 2014

Ed 3 Rev 4	May 5, 2014
Ed 3 Rev 5	June 10, 2015
Ed 4 Rev 0	July 25, 2015
Ed 4 Rev 1	April 6, 2016
Ed 4 Rev 2	March 16, 2017
Ed 4 Rev 3	September 1, 2017
Ed 4 Rev 4	December 5, 2017
Ed 4 Rev 5	January 12, 2018

Section	Pages	Revision
Section 0	2, 3, 5, 6, 8 thru 11	Rev 0
	12	Rev 4
	1, 4, 7	Rev 5
Section 1	1 thru 18	Rev 0
Section 2	1 thru 10, 13 thru 32	Rev 0
	11,12	Rev 5
Section 3	1 thru 58	Rev 0
Section 4	1, 2, 5 thru 10, 12 thru 15, 18, 21,	Rev 0
	23, 24, 26 thru 30	
	4	Rev 2
	3, 11, 16, 17, 20, 25	Rev 4
	19, 22	Rev 5
Section 5	1 thru 15,17 thru 22	Rev 0
	16	Rev 2
Section 6	1 thru 10, 14	Rev 0
	11 thru 13	Rev 5
Section 7	1 thru 44	Rev 0
Section 8	1 thru 10	Rev 0
Section 9	1 thru 8	Rev 5
Supplements LOEP: make reference to the Supplements Cover Pages		

3. FOREWORD

COSTRUZIONI AERONAUTICHE

Tecnam **P2006T** is a twin-engine four-seat aircraft with high cantilevered wing and tricycle retractable landing gear.

Section 1 supplies general information and it contains definitions, symbols explanations, acronyms and terminology used.

Before using the airplane, you are recommended to read carefully this manual: a deep knowledge of airplane features and limitations will allow you for operating the airplane safely.

For further information, please contact:

COSTRUZIONI AERONAUTICHE **TECNAM** s.r.l.

Via MAIORISE

CAPUA (CE) - ITALY

4. SECTIONS LIST

General	Section 1 (a non-approved Chapter)
Limitations	Section 2 - EASA Approved Chapter
Emergency Procedures	Section 3 (a non-approved Chapter)
Normal Procedures	Section 4 (a non-approved Chapter)
Performances	Section 5 (a non-approved Chapter)
Weight and Balance	Section 6 (a non-approved Chapter)
Airframe and Systems description	Section 7 (a non-approved Chapter)
Airplane Care and Maintenance	Section 8 (a non-approved Chapter)
Supplements	Section 9 (*)

(*) EASA approved parts, if any, are reported on the supplements

Aircraft Flight Manual SECTIONS LIST

SECTION 1 - GENERAL

INDEX

1.	Introduction	3
2.	Three-view and dimensions	4
3.	Control Surfaces Travel Limits	6
4.	Engine	6
5.	Propeller	6
6.	Governor	7
7.	Fuel	7
8.	Lubrication	7
9.	Cooling	8
10.	Maximum weights	8
	Standard weights	
12.	Specific loadings	8
13.	Acronyms and terminology1	0
14.	Unit conversion chart1	
15.	Litres / US gallons conversion chart1	6

INDEX

1. INTRODUCTION

The Aircraft Flight Manual has been implemented to provide the owners with information for a safe and efficient use of the aircraft TECNAM P2006T.

Warning - Caution - Note

Following definitions apply to warnings, cautions and notes used in the Aircraft Flight Manual.

The non-observation of the corresponding procedure can lead, as immediate effect, to a significant reduction of the flight safety.

The non-observation of the corresponding procedure can lead to an equipment damage which leads to a reduction of the flight safety in a short or longer time interval.

Draws the attention to a procedure not directly related to safety of flight.

4th Edition, Rev 0

INTRODUCTION

٤ 2.58 -11.40 mε ٤ с Сі പ 8.7 "#**1**@ • 1 k) ò ε Э.Э P2006 T General View **TECNAM** sed 8

2. THREE-VIEW AND DIMENSIONS

Figure 1 – General views

Section 1 – General

4th Edition, Rev 0

THREE-VIEW AND DIMENSIONS

Dimensions

Overall dimensions		
Wingspan	11,4 m	37,4 ft
Length	8,7 m	28,5 ft
Overall height	2,58 m	8,46 ft
Wing		
Wing surface	$14,76 \text{ m}^2$	158,9 ft ²
Mean Geometric Chord	1,295 m	4,25 ft
Dihedral	1°	
Aspect ratio	8,80	
Main Landing Gear		
Track		2.0 m
Wheelbase		2.9 m
Tire		6.00-6
Wheel rim assembly (Cleveland)		P/N 40-59A
Nose Landing Gear		
Tire		5.00 - 5
Wheel rim assembly (Cleveland)		P/N 40-77C

Section 1 – General

4th Edition, Rev 0

THREE-VIEW AND DIMENSIONS

3. CONTROL SURFACES TRAVEL LIMITS

Ailerons	Up 20° Down 17 ° $(\pm 2^\circ)$
Stabilator (refer to Trailing Edge)	Up 4° Down 15° (± 2°)
Stabilator trim tab (refer to Trailing Edge)	Up 2°; Down 19° (± 2°)
Rudder	RH 26° LH 26° (± 2°)
Rudder trim tab	RH 20° LH 20° (± 2°)
Flaps	0°; 40° (- 2°)

4. ENGINE

5.

Manufacturer	Bombardier-Rotax GmbH
Model	912 S3
Certification basis	FAR 33 - Amendment 15
Type Certificate	EASA TCDS no. E.121 dated 1 April 2008
Engine type	4 cylinders horizontally opposed with 1352 c.c. of overall displacement, liquid cooled cylinder heads, ram-air cooled cylinders, two carburetors, integrated re- duction gear box with torsional shock ab- sorber and overload clutch.
Maximum power (at declared rpm)	73.5 kW (98.6hp) @ 5800 rpm -5 minutes maximum.
	69.0 kW (92.5hp) @ 5500 rpm (continu- ous)
PROPELLER	
Manufacturer	MT Propeller
Type Certificate	LBA 32.130/086 (MTV-21 series)
Model	MTV-21-A-C-F/CF178-05
Blades/hub	2 wood/composite blades – aluminum hub
Diameter	1780 mm (no reduction allowed)
Туре	Variable pitch - hydraulically controlled

Section 1 – General

4th Edition, Rev 0

6. GOVERNOR

Manufacturer	Mt Propeller
Model	P-875-12
Туре	Hydraulic

7. FUEL

Approved fuel:

MOGAS ASTM D4814

MOGAS EN 228 Super/Super plus (min. RON 95)

AVGAS 100LL (ASTM D910)

(see also Section 2)

Fuel tanks

Capacity of each wing tan Tanks overall capacity Overall usable fuel Overall unusable fuel

8. LUBRICATION

Lubrication system Oil Two integrated tanks (one in each wing) fitted with drainable sump and drain valve

100 litres (26,42 US gallons)200 litres (52,8 US gallons)

194.4 litres (51,35 US gallons)

5.6 litres (1,48 US gallons)

Forced type with external reservoir

Use only oil with API classification **"SG"** or higher. For additional info, refer to "Rotax Operators Manual" – last issue -, "Operating Media" Section.

Max. 3.0 litres – min. 2.0 litres (per tank)

Oil capacity

Section 1 – General

4th Edition, Rev 0

9. COOLING

Cooling system	Ram-air cooled cylinders, liquid cooled cylinder heads (closed and pressurized circuit)
Coolant liquid	Certified for Water/Coolant mixture.
	Make reference to "Rotax Operators Manual" – last issue
Overall circuit capacity	1410 cm ³

10. WEIGHTS

See Section 2.

11. STANDARD WEIGHTS

Empty Weight: see weighing record on Section 6

12. SPECIFIC LOADINGS

	MTOW 1180 kg (2601 lb)	MTOW 1230 kg (2712 lb)
Wing Loading	80 kg/m ² (16,37 lb/sqft)	83 kg/m ² (17,1 lb/sqft)
Power Loading	6.0 kg/hp (13,26 lb/hp)	6.28 kg/hp (13,84 lb/hp)

<u>NOTE</u>. Reference is made to both MTOW: 1180 kg and 1230 kg (if Supplement A19 or G10 - Increased MTOW @1230 KG - is applicable).

Section 1 – General

4th Edition, Rev 0

13. ACRONYMS AND TERMINOLOGY

KCAS	<u>Calibrated Airspeed</u> is the indicated airspeed expressed in knots, corrected taking into account the errors related to the instrument itself and its installation.
KIAS	<u>Indicated Airspeed</u> is the speed shown on the airspeed indicator and it is expressed in knots.
KTAS	<u>True Airspeed</u> is the KCAS airspeed corrected taking into ac- count altitude and temperature.
V _A	<u>Design Manoeuvring speed</u> is the speed above the which it is not allowed to make full or abrupt control movement.
\mathbf{V}_{FE}	<u>Maximum Flap Extended speed</u> is the highest speed permissible with flaps extended.
V_{LO}	<u>Maximum Landing Gear Operating speed</u> is the maximum speed allowed to retract or to extend the landing gear.
V_{LE}	<u>Maximum Landing Gear Extended speed</u> is the maximum speed allowed with the landing gear extended.
V _{MC}	<u>Minimum control speed</u> : is the minimum speed necessary to en- sure an efficient aircraft control in case of one engine inopera- tive.
V _{NO}	<u>Maximum Structural Cruising Speed</u> is the speed that should not be exceeded, except in smooth air and only with caution.
V _{NE}	<u>Never Exceed Speed</u> is the speed limit that may not be exceeded at any time.
Vo	<u>Operating Manoeuvring speed</u> is the speed above the which it is not allowed to make full or abrupt control movement
Vs	Stall Speed.
V_{S0}	Stall Speed in landing configuration (flaps and landing gear extended).
V _{S1}	Stall speed in the given flap and landing gear configuration.
V _{SSE}	<u>Recommended safe simulated OEI speed</u> is the minimum speed at which simulated OEI training operation should be executed.
V_X	<u>Best Angle-of-Climb Speed</u> is the speed which allows best ramp climb performances.
V_{Y}	<u>Best Rate-of-Climb Speed</u> is the speed which allows the best gain in altitude over a given time.
V _R	<u>Rotation speed</u> : is the speed at which the aircraft rotates about the pitch axis during takeoff
V_{YSE}	Best Rate-of-Climb speed in case of one engine inoperative.

Section 1 – General

ACRONYMS AND TERMINOLOGYACRONYMS AND TERMINOLOGY

Meteorological terminology

ISA	International Standard Atmosphere: is the air atmospheric standard condition at sea level, at 15° C (59°F) and at 1013.25hPa (29.92inHg).			
QFE	Official atmospheric pressure at airport level: it indicates the air- craft absolute altitude with respect to the official airport level.			
QNH	<u>Theoretical atmospheric pressure at sea level</u> : is the atmospheric pressure reported at the medium sea level, through the standard air pressure-altitude relationship, starting from the airport QFE.			
OAT	<u>Outside Air Temperature</u> is the air static temperature expressed in degrees Celsius (°C).			
Ts	Standard Temperature is 15°C at sea level pressure altitude and decreased by 2°C for each 1000 ft of altitude.			
H _P	<u>Pressure Altitude</u> is the altitude read from an altimeter when the barometric subscale has been set to 1013 mb.			

4th Edition, Rev 0

ACRONYMS AND TERMINOLOGYACRONYMS AND TERMINOLOGY

Aircraft performance and flight planning terminology

Crosswind Velocity	is the velocity of the crosswind component for the which adequate control of the air- plane during takeoff and landing is assured.
Usable fuel	is the fuel available for flight planning.
Unusable fuel	is the quantity of fuel that cannot be safely used in flight.
G	is the acceleration of gravity.
TOR	is the takeoff distance measured from actual start to wheel liftoff point.
TOD	is total takeoff distance measured from start to 15m obstacle clearing.
GR	is the distance measured during landing from actual touchdown to stop point.
LD	is the distance measured during landing, from 15m obstacle clearing to actual stop.
S/R	is the specific range, that is the distance (in nautical miles) which can be expected at a specific power setting and/or flight configu- ration per kilogram of fuel used.

Section 1 – General

4th Edition, Rev 0

ACRONYMS AND TERMINOLOGYACRONYMS AND TERMINOLOGY

Weight and balance terminology

Datum	"Reference datum" is an imaginary vertical plane from which all horizontal distances are measured for balance purposes.	
Arm	is the horizontal distance of an item meas- ured from the reference datum.	
Moment	is the product of the weight of an item mul- tiplied by its arm.	
<i>C.G.</i>	<u>Center of Gravity</u> is the point at which the airplane, or equipment, would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the aircraft.	
Standard Empty Weight	is the weight of the aircraft with engine flu- ids and oil at operating levels.	
Basic Empty Weight	is the standard empty weight to which it is added the optional equipment weight.	
Useful Load	is the difference between maximum takeoff weight and the basic empty weight.	
Maximum Takeoff Weight	is the maximum weight approved to perform the takeoff.	
Maximum Landing Weight	is the maximum weight approved for the landing touchdown (for <i>P2006T</i> it is equivalent to the Maximum Takeoff Weight).	

Section 1 – General

4th Edition, Rev 0

ACRONYMS AND TERMINOLOGYACRONYMS AND TERMINOLOGY

14. UNIT CONVERSION CHART

MOLTIPLYING		BY 🗲	YIELDS	
TEMPERATURE Fahrenheit Celsius	[°F] [°C]	$\frac{5}{9} \cdot (F - 32)$ $\left(\frac{9}{5} \cdot C\right) + 32$	Celsius Fahrenheit	[°C] [°F]
Forces				
Kilograms	[kg]	2.205	Pounds	[lbs]
Pounds	[lbs]	0.4536	Kilograms	[kg]
Speed				
Meters per second	[m/s]	196.86	Feet per minute	[ft/min]
Feet per minute	[ft/min]	0.00508	Meters per second	[m/s]
Knots	[kts]	1.853	Kilometres / hour	[km/h]
Kilometres / hour	[km/h]	0.5396	Knots	[kts]
PRESSURE				
Atmosphere	[atm]	14.7	Pounds / sq. in	[psi]
Pounds / sq. in	[psi]	0.068	Atmosphere	[atm]
LENGTH				
Kilometres	[km]	0.5396	Nautical miles	[nm]
Nautical miles	[nm]	1.853	Kilometres	[km]
Meters	[m]	3.281	Feet	[ft]
Feet	[ft]	0.3048	Meters	[m]
Centimetres	[cm]	0.3937	Inches	[in]
Inches	[in]	2.540	Centimetres	[cm]
VOLUME				
Litres	[1]	0.2642	U.S. Gallons	[US Gal]
U.S. Gallons	[US Gal]	3.785	Litres	[1]
AREA				
Square meters	[m ²]	10.76	Square feet	[sq ft]
Square feet	[sq ft]	0.0929	Square meters	[m ²]

4th Edition, Rev 0

UNIT CONVERSION CHART

15. LITRES / US GALLONS CONVERSION CHART

Litres	US Gallons
5	1.3
10	2.6
15	4.0
20	5.3
25	6.6
30	7.9
35	9.2
40	10.6
45	11.9
50	13.2
60	15.9
70	18.5
80	21.1
90	23.8
100	26.4
110	29.1
120	31.7
130	34.3
140	37.7
150	39.6
160	42.3
170	44.9
180	47.6
190	50.2
200	52.8

US Gallons	Litres
1	3.8
2	7.6
3	11.4
4	15.1
6	22.7
8	30.3
10	37.9
12	45.4
14	53.0
16	60.6
18	68.1
20	75.7
22	83.3
24	90.9
26	98.4
28	106.0
30	113.6
32	121.1
34	128.7
36	136.3
38	143.8
40	151.4
45	170.3
50	189.3
55	208.2

COSTRUZIONA ARTICHE P2006T - Aircraft Flight Manual Page 2 - 1

SECTION 2 – LIMITATIONS

INDEX

1.	Introduction	3
2.	Speed limitations	5
3.	Airspeed indicator markings	7
4.	Powerplant limitations	9
5.	Lubricant	10
6.	Coolant liquid	10
7.	Propeller	10
8.	Governor	10
9.	Maximum operating altitude	11
10.	Ambient temperature	11
11.	Powerplant instruments markings	12
12.	Other instruments markings	12
13.	Warnings, cautions and advisories lights	13
14.	Weights	15
15.	Center of gravity range	17
16.	Approved maneuvers	19
17.	Maneuvers load factor limits	19
18.	Flight crew	19
19.	Flight conditions	20
20.	Fuel	20
21.	Limitations placards	21
21.3	1. Speed limitations	21
21.2	2. Operating limitations	22
21.3	3. Inflight engine restart	23
21.4	4. Baggage compartment capacity	23
21.5	5. Engine oil level	24
21.6	6. Fuel type	24
21.7	7. Landing Gear Hydraulic System	25
21.8	8. Rear seats	26
21.9	9. Other placards	27
22.	Kinds of Operations Equipment List	29

1. INTRODUCTION

Section 2 includes operating limitations, instrument markings and basic placards necessary for safe operation of P2006T aircraft, its engines and standard systems and equipment.

This AFM Section is EASA approved.

2. SPEED LIMITATIONS

The following table addresses the airspeed limitations and their operational significance:

SPEED		KIAS	KCAS	REMARKS	
V _{NE}	Never exceed speed		167	168	Do not exceed this speed in any operation.
V _{NO}	Maximum Structural Cruising Speed		135	133	Do not exceed this speed except in smooth air, and only with caution.
VA	Design Manoeuvring speed		118	117	Do not make full or abrupt control movement above
V _O	Operating Manoeuvring speed				this speed, because under certain conditions the air- craft may be overstressed by full control movement.
V _{LE}	Maximum Landing Gear ex- tended speed		93	92	Do not exceed this speed with the landing gear ex- tended.
V _{LO}	Maximum Landing Gear op- erating speed		93	92	Do not exceed this speed when operating the landing gear.
V _{FE}	Maximum flaps	FULL	93	92	Do not exceed this speed
	extended speed	Т.О.	119	117	for indicated flaps setting.
V _{MC}	Aircraft minimum control speed with one engine inoper- ative		62	62	Do not reduce speed below this value in event of one engine inoperative condi- tion.

3. AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their colour code are explained in the following table.

MARKING	KIAS	EXPLANATION
White arc	53-93	Lower limit is V_{SO} , upper limit is the maxi- mum allowable speed with flaps extended in <i>FULL</i> position.
Red line	62	Minimum aircraft control speed with one en- gine inoperative and flaps set to T.O.
Green arc	66-135	Normal aircraft operating range (lower limit is V_{S1} , stall speed in "clean" configuration, and upper limit is the maximum structural cruise speed V_{NO}).
Blue line	80	Best rate-of-climb speed with one engine in- operative at sea level.
Yellow arc	135-167	Speed range where manoeuvres must be con- ducted with caution and only in smooth air.
Red line	167	Maximum speed for all operations.

INTENTIONALLY LEFT BLANK

4. **POWERPLANT LIMITATIONS**

Following table reports the operating limitations for both engines installed: ENGINE MANUFACTURER: Bombardier Rotax GmbH. ENGINE MODEL: 912 S3

MAXIMUM POWER:

	Max Power kW (<i>hp</i>)	Max rpm. Prop. rpm <i>(engine)</i>	Time max. (minutes)
Max. T.O.	73.5 (98.6)	2388 (5800)	5
Max. Cont.	69 (92.5)	2265 (5500)	-

Temperatures:

Max CHT*	135° C
Max CT	120° C
Min/Max Oil	50° C / 130° C
Oil normal operating range (approx.)	90° C / 110° C

* applicable for Engines up to serial no. 4924543(included) and repaired engine which doesn't change the cylinder head n°3 with new one (part no. 413195)

Oil Pressure:

Minimum	0.8 Bar / 12psi	(below 1400 rpm prop)
Normal	2 – 5 Bar / 29-73psi	(above 1400 rpm prop)
Maximum	7 Bar / 102 psi	(above 1400 rpm prop)

Engine starting: allowable temperature range

OAT Min	-25° C
OAT Max	+50° C

In event of cold starting operation, it is permitted a maximum oil pressure of 7 bar for a short period.

POWERPLANT LIMITATIONS

Fuel pressure:

Minimum2.2 psi (0.15 Bar)Maximum5.8 psi (0.40 Bar) or 7.26 psi* (0.5 Bar)*only applicable for fuel pump part no. 893110 or 893114

5. LUBRICANT

Use only oil with API classification **"SG"** or higher. For additional info, refer to "Rotax Operators Manual" – last issue -, "Operating Media" Section.

6. COOLANT LIQUID

Refer to "Rotax Operators Manual" - last issue -, "Operating Media" Section.

7. PROPELLER

MANUFACTURER:	MT Propeller
MODEL:	MTV-21-A-C-F-/CF178-05
TYPE:	wood/composite 2-blade, variable pitch hydraulically con- trolled and fully featherable
DIAMETER:	1780 mm (no reduction is permitted)

8. GOVERNOR

MANUFACTURER:	MT Propeller
MODEL:	P-875-12
OPERATION:	Hydraulically controlled (oil pressure to reduce the pitch)

9. MAXIMUM OPERATING ALTITUDE

Maximum operating altitude is 14000 ft (4260 m) MSL.

Flight crew is required to use supplemental oxygen according to applicable Air Operation Rules.

10. Ambient temperature

Ambient temperature: from -25°C to +50°C.

Flight in expected and/or known icing conditions is forbidden.

11. POWERPLANT INSTRUMENTS MARKINGS

Powerplant instrument markings and their colour code significance are shown below:

Instrum	IENT	RED LINE Minimum limit	GREEN ARC Normal operating	YELLOW ARC Caution	RED LINE Maximum limit
Propeller	rpm		580 - 2265	2265 - 2388	2388
Oil temp.	°C	50	90 - 110 $50 - 130^{(1)}$	50 – 90 ⁽²⁾	130
СТ	°C		50-120		120
CHT ⁽³⁾	°C		50 - 135		135
Oil pressure	bar	0.8	2 - 5	0.8 - 2 5 - 7 ⁽⁴⁾	7
Fuel press.	psi	2.2	2.2 - 5.8 or 7.2 ⁽⁵⁾		5.8 or 7.2 ⁽³⁾
Fuel Q.ty	litres	0(6)			

12. OTHER INSTRUMENTS MARKINGS

Instrument	RED LINE	GREEN ARC	YELLOW ARC	RED LINE
	Minimum limit	Normal operating	Caution	Maximum limit
Voltmeter	10,5 Volt	12 - 14 Volt		

If MOD2006/212 is embodied, markings are unchanged so refer to the basic AFM for information.

1 Applicable for aircraft with MOD2006/002 embodied.

2 Applicable for aircraft with MOD2006/002 embodied.

- 3 Applicable for Engines up to serial no. 4924543(included) and repaired engine which doesn't change the cylinder head n°3 with new one (part no. 413195).
- 4 In event of cold starting operation, it is permitted a maximum oil pressure of 7 bar for a short period.

5 Only applicable for fuel pump part no. 893110 or 893114.

6 "0" indication shows the unusable fuel quantity (2,8 litres for each fuel tank).

4th Edition, Rev. 5

Section 2 – Limitations

POWERPLANT INSTRUMENTS MARKINGS

13. WARNINGS, CAUTIONS AND ADVISORIES LIGHTS

Following table addresses the warning, caution and advisory lights installed (unless differently specified) on the annunciator panel:

Warnings (RED)	Cause
LH OVERVOLT	LH electric system overvoltage
RH OVERVOLT	RH electric system overvoltage
MAIN DOOR OPEN ALERT	Main door open and/or unlocked
REAR DOOR OPEN ALERT	Rear door open and/or unlocked
LH LOW COOLANT	Left engine - coolant liquid low level
RH LOW COOLANT	Right engine - coolant liquid low level
LH ENGINE FIRE	Left engine compartment: fire detected
RH ENGINE FIRE	Right engine compartment: fire detected
LG TRANSITION (warning light installed near the landing gear control lever)	One or more legs are in transition phase and/or the selected retracted/extended position is not yet reached.
Cautions (Amber)	Cause
LH GENERATOR	LH generator failure
RH GENERATOR	RH generator failure
EXT POWER	External electrical supply connected
PITOT HEAT	Pitot heating system failure/not activated
GEAR PUMP ON	LG pump electrically supplied
Advisories (Green)	Indication
LH FUEL PUMP	Left engine - electrical fuel pump ON
RH FUEL PUMP	Right engine - electrical fuel pump ON
PITOT HEAT	Pitot heating system ON
LG Down & Locked (3 advisory lights, one for each leg, in- stalled near the landing gear control lev- er)	Landing gear extended and locked

INTENTIONALLY LEFT BLANK

14. WEIGHTS

Condition	Weight	
Maximum takeoff weight	1180 kg	2601 lb
Maximum landing weight	1180 kg	2601 lb
Maximum zero wing fuel weight	1145 kg	2524 lb

Refer to Para. 21.4 of this AFM Section for baggage loading limitations.

INTENTIONALLY LEFT BLANK

15. CENTER OF GRAVITY RANGE

Datum	Vertical plane tangent to the wing leading edge (the aircraft must be levelled in the longitudinal plane)
Levelling	Refer to the seat track supporting beams (see procedure in Section 6)
Forward limit	0.221 m (16.5% MAC) aft of datum for all weights
Aft limit	0.415 m (31% MAC) aft of datum for all weights

The pilot is responsible for ensuring that the airplane is properly loaded. Refer to Section 6 for appropriate instructions.

INTENTIONALLY LEFT BLANK

16. APPROVED MANEUVERS

The aircraft is certified in normal category in accordance with EASA CS-23 regulation.

Non aerobatic operations include:

- Any manoeuvre pertaining to "normal" flight
- Stalls (except whip stalls)
- Lazy eights
- Turns in which the angle of bank is not more than 60°
- Chandelle

Acrobatic manoeuvres, including spins and turns with angle of bank of more than 60° , are not approved for such a category. In addition, stall with one engine inoperative is forbidden.

Limit load factor could be exceeded by moving flight controls to maximum deflection at a speed above $V_A=V_O$ (118 KIAS, Manoeuvring Speed).

17. MANEUVERS LOAD FACTOR LIMITS

Maneuver load factors limits are as follows:PositiveNegative+ 3.8 g- 1.78 gManeuver load factors limits with flaps extended are as follows:PositiveNegative+ 2 g0 g

18. FLIGHT CREW

Minimum crew: Maximum number of occupants: 1 pilot 4 people (including the pilot)

19. FLIGHT CONDITIONS

The aircraft can be equipped for following flight operations (make reference to Para. 22 concerning the equipment list required on board to allow them):

- VFR Day and Night
- IFR Day and Night including IMC

Flight in expected and/or known icing conditions, in proximity of storms or in turbulence is forbidden.

Additional equipment can be required to fulfil national or specific operational requirements. The owner is responsible for fulfilling these requirements.

Equipment list is addressed in Section 6.

20. FUEL

2 TANKS:	100 litres each one (26,42 US gallons)
MAXIMUM CAPACITY:	200 litres (52,8 US gallons)
MAXIMUM USABLE FUEL:	194.4 litres (51,35 US gallons)
APPROVED FUEL:	MOGAS ASTM D4814
	MOGAS EN 228 Super/Super plus (min. RON 95)

AVGAS 100 LL (ASTM D910)

Prolonged use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. It is therefore suggested to avoid using this type of fuel unless strictly necessary. Make reference to Rotax Maintenance Manual which prescribes dedicated checks due to the prolonged use of Avgas.

21. LIMITATIONS PLACARDS

Hereinafter the placards, related to the operating limitations and installed on *P2006T*, are reported.

21.1. SPEED LIMITATIONS

On the left side instrument panel, above on the left, it is placed the following placard reporting the speed limitations:

> Manouvering speed $V_0 = 118$ KIAS Maximum L.G. op. speed $V_{LO}/V_{LE} = 93$ KIAS

21.2. **OPERATING LIMITATIONS**

On the instrument panel, it is placed the following placard reminding the observance of aircraft operating limitations; make reference to Para. 22 for the list of equipment required on board to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

> This A/C can be operated only in normal category DAY-NIGHT-VFR-IFR (with required equipment) in non-icing conditions. All aerobatics manoeuvres including spinning are prohibited. For operational limitations refer to FLIGHT MANUAL

21.3. INFLIGHT ENGINE RESTART

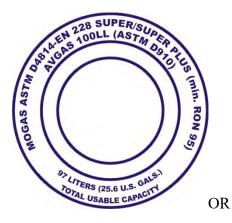
The inflight engine restart procedure is reported on a placard (shown below) installed on the central console.

21.4. BAGGAGE COMPARTMENT CAPACITY

The placard shown below, and installed on the baggage compartment (vertical pan-

el), concerns the baggage compartment load limitations herein reported:

- Maximum allowable load: 80kg/176lb
- Maximum intensity of loading: $0.9 \text{ kg/dm}^2 19 \text{ lbs/sqft}$


21.5. ENGINE OIL LEVEL

On the engine nacelle, in correspondence of the engine oil reservoir access door, it is located the following placard addressing the limitations concerning the oil level, the oil volume and the oil type.

21.6. FUEL TYPE

In correspondence of each fuel tank filler cap, it is located the following placard reporting the approved fuel type and the tank usable fuel.

MOGAS ASTM D4814-EN 228 SUPER/SUPER PLUS (min. RON 95) AVGAS 100LL (ASTM D910)

97 LITERS (25.6 U.S. GALS.) TOTAL USABLE CAPACITY

LIMITATIONS PLACARDS

21.7. LANDING GEAR HYDRAULIC SYSTEM

The placard shown below, and located on the tail cone, concerns the allowed low pressure limit for the landing gear emergency accumulator.

The low pressure limit is **20 bar**.

If during pre-flight inspection the value is below **20 bar**, the system must be recharged by means of the override button (see Section 7, Para. 9).

4th Edition, Rev. 0

LIMITATIONS PLACARDS

21.8. REAR SEATS

During Taxi, Take OFF, Landing (including Emergency Landing), both rear seats must be kept in the lowest and full aft position.

The following placard is located aside both rear seats.

Rear seats must be kept in lowest and full aft position during Taxi, Take Off, Landing and Emergency Landing

21.9. OTHER PLACARDS

Description	Placard	Place
Smoking ban	NO SMOKING	Instruments panel, right side
Ditching emer- gency exit: opening in- structions	A REAL PROPERTY AND A REAL	Ditching emergency exit handle: internal side
Ditching emer- gency exit: opening in- structions	AND	Ditching emergency exit handle: external side
Door locking system: by- pass instruc- tions	FOR EMERGENCY ACCESS 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emer- gency exit: external side
Door locking system: by- pass instruc- tions	FOR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emer- gency exit: internal side
Main door: exit instructions	WARNING VERIFY PROPELLER STOPPED BEFORE OPENING DOOR EXIT TOWARDS FRONT OF AIRCRAFT	Main door, internal side
Emergency ex- it label	EMERGENCY EXIT	Emergency exit: inter- nal and external side

Section 2 – Limitations

4th Edition, Rev. 0

LIMITATIONS PLACARDS

INTENTIONALLY LEFT BLANK

22. KINDS OF OPERATIONS EQUIPMENT LIST

This paragraph reports the KOEL table, concerning the equipment list required on board under CS-23 regulations to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

Flight in VFR Day and Night, IFR Day and Night is permitted only if the prescribed equipment is installed and operational.

Additional equipment, or a different equipment list, for the intended operation may be required by national operational requirements and also depends on the airspace classification and route to be flown.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page 2 - 30

Equipment	VFR Day	VFR Night	IFR Day	IFR Night
Magnetic compass	•	•	•	•
Airspeed indicator	•	•	•	•
Altimeter	•	•	•	•
Vertical speed indicator	•	•	•	•
Attitude indicator (electric)	•	•	•	•
Turn coordinator	•	•	•	•
OAT indicator	•	•	•	•
Pitot heating system	•	•	•	•
Directional Gyro (electric)	•	•	•	•
Clock	•	•	•	•
Breakers panels	•	•	•	•
First Aid kit	•	•	•	•
Fire extinguisher	•	•	•	•
Fire detectors (2)	•	•	•	•
Instruments lights	•	•	•	•
Position lights	•	•	•	•
Landing light	•	•	•	•
Taxi light	•	•	•	•
Strobe lights	•	•	•	•
Torch		•	•	•
Cabin light		•	•	•
Cockpit lights		•	•	•
Emergency light	•	•	•	•
Volt-Ammeter	•	•	•	•
COMM/NAV/GPS equipment	•	•	•	•
VOR/LOC/GS/GPS CDI	•	•	•	•
LG position and transition lights	•	•	•	•
Transponder	•	•	•	•
Audio Panel/Marker beacon	•	•	•	•
Altitude encoder	•	•	•	•
ELT	•	•	•	•
Alternate static source	•	•	•	•
MAP indicator (dual)	•	•	•	•
RPM indicator (2)	•	•	•	•
Oil pressure indicator (2)	•	•	•	•
Oil temperature indicator (2)	•	•	•	•
CHT (2)	•	•	•	•
Fuel pressure indicator (2)	•	•	•	•
Fuel quantity indicator (2)	•	•	•	•
Longitudinal trim indicator	•	•	•	•
Rudder trim indicator	•	•	•	•
Flaps position indicator	•	•	•	•
Stall warning system	•	•	•	•
Annunciator panel	-	-		-
	•	•	•	•
2 nd VHF COMM/NAV equipment		•	•	•
2 nd VOR/LOC/GS CDI			•	•
DME		+	•	•
ADF			•	•
2 nd Airspeed indicator			•	•
2 nd Attitude indicator (electric)			•	•
2 nd Altimeter			•	•
	VFR Day	VFR Night	IFR Day	IFR Night

Section 2 – Limitations

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

SECTION 3 – EMERGENCY PROCEDURES

INDEX	
1. Introduction	3
1.1. Engine failure during takeoff run	3
2. Airplane alerts	5
2.1. Single generator failure / overvoltage	
2.2. Both generators failure	
2.3. Both generators overvoltage	
2.4. Failed door closure	-
2.5. Pitot heating system failure	
2.6. Coolant liquid low level	
2.7. Gear Pump failure	
2.8. Engine fire	. 12
3. Engine securing	.13
4. Powerplant emergencies	.14
4.1. Propeller overspeeding	
4.1. Propener overspeeding	
4.2. CHT/CT limit exceedance	
4.5. On temperature limit exceedance	
4.4. On pressure mints exceedance	
-	
5. Other emergencies	
5.1. Emergency descent	
5.2. Total electrical failure	
5.3. Static ports failure	
5.4. Unintentional flight into icing conditions	
5.5. Carburettor icing	
5.6. Flaps control failure	. 22
6. One engine inoperative procedures	.23
6.1 Characteristic airspeeds with one engine inoperative	. 24
6.2 Inflight engine restart	. 25
6.3 Engine failure during takeoff run	
6.4 Engine failure during climb	
6.5. Engine failure in flight	
6.6. One engine inoperative landing	. 30
7. Landing gear failures	. 32
7.1. Emergency landing gear extension	. 32
7.2. Complete Gear up or nose gear up landing	. 33

4th Edition, Rev. 0

EXTECNAM P2006T - Aircraft Flight Manual Page 3 - 2

7.3.	Partial Main LG extension	34
7.4.	Failed retraction	36
7.5.	Unintentional landing gear extension	36
8. S	moke and fire occurrence	38
8.1	Engine fire on the ground	38
8.2	Engine fire during takeoff run	39
8.3	Engine fire in flight	41
8.4	Electrical smoke in cabin on the ground	41
8.5	Electrical smoke in cabin during flight	42
9. U	nintentional spin recovery4	14
10. L	anding emergencies	16
10.1	Landing without engine power	46
10.2	Landing with Nose landing gear tire deflated	48
10.3	Landing with a known main landing gear tire deflated	49
10.4	Landing without brakes	50
11. A	ircraft evacuation	51
12. D	litching	52

4th Edition, Rev. 0

1. INTRODUCTION

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

Before operating the aircraft, the pilot should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self-study should be done.

Emergency procedures associated with those optional systems and equipment which require handbook supplements are provided in separate Supplements.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1. ENGINE FAILURE DURING TAKEOFF RUN

	BEFORE ROTATION: ABORT TAKE OFF			
1. 2.	Throttle Lever Rudder	BOTH IDLE Keep heading control		
3. 4.				

b. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

- 1. Keep self-control and maintain aircraft flight attitude and parameters
- 2. Analyse the situation identifying, if required, the area for a possible emergency landing
- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control as applicable

NOTE

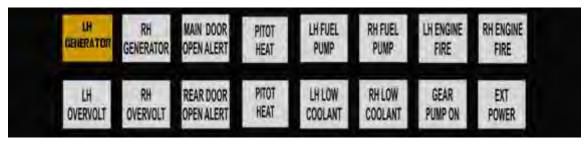
For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

4th Edition, Rev. 0

Section 3 – Emergency procedures

TECNAM P2006T - Aircraft Flight Manual Page 3 - 4

In this Chapter, following definitions apply: Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured. Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.


4th Edition, Rev. 0

2. AIRPLANE ALERTS

The annunciator panel, located on the left side instrument panel, contains 16 lights for warnings, cautions and advisories. The colours are as follows:

GREEN:	to indicate that pertinent device is turned ON
AMBER:	to indicate no-hazard situations which have to be considered and
	which require a proper crew action
<u>RED:</u>	to indicate emergency conditions

2.1. SINGLE GENERATOR FAILURE / OVERVOLTAGE

In event of LH or RH GENERATOR caution light turned ON, apply following procedure:

1. FIELD LH (or RH)	OFF
2. FIELD LH (or RH)	ON
<u>If the LH (or RH) GENERATOR</u>	caution stays displayed
2 EIELDIU ($\alpha \pi$ DU)	OFF

3.	FIELD LH (or KH)	OFF
4.	Avionic LH	OFF
5.	ADF	OFF

NOTE

Switching OFF avionic LH and ADF will permit to shed non essential electrical power. The battery and a single generator are able to supply the elec-

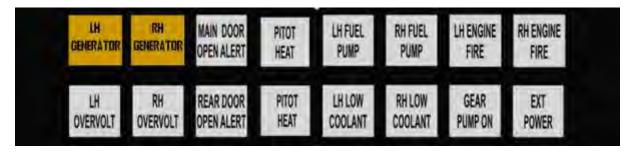
trical power necessary for flight, but redundancy is lost.

If conditions permit:

Switching CROSS BUS OFF will further reduce alternator load; the decision mainly depends on weather conditions.

6. CROSS BUS LH (or RH)

OFF


Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	Encoder Altimeter	NAV 2	Stall Warning
		A/P	RH attitude indicator
		A/P Pitch Trim	

7. Land as soon as practicable

4th Edition, Rev. 0

2.2. BOTH GENERATORS FAILURE

In event of both LH and RH GENERATOR caution lights turned ON:

1.	FIELD LH and RH	BOTH OFF
2.	FIELD LH and RH	BOTH ON

If the LH (or RH) GENERATOR caution stays displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single generator failure / overvoltage drill (Para 2.1)

If both LH and RH GENERATOR cautions stay displayed

3. FIELD LH and RHBOTH OFF4. CROSS BUS LH and RHBOTH OFF

If engine starting battery modification is applied

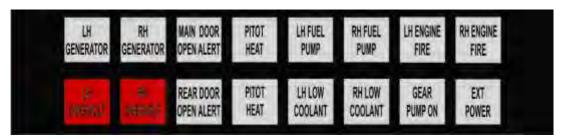
5. EMERG BATT switch

ON

6. Land as soon as practical.

If engine starting battery modification is not applied

5. Land as soon as possible.


Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	Encoder Altimeter	NAV 2	Stall Warning
		A/P	RH attitude indicator
		A/P Pitch Trim	

NOTE

The battery alone can supply electrical power for at least 30 minutes.

2.3. BOTH GENERATORS OVERVOLTAGE

In event of both LH and RH OVERVOLT warning lights turned ON:

- 1. FIELD LH and RH
- 2. FIELD LH and RH

If the LH (or RH) GENERATOR caution stays displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single generator failure / overvoltage drill (Para 2.1)

If both LH and RH OVERVOLT warning stay displayed

3.	CROSS BUS LH and RH	BOTH OFF
4.	FIELD LH and RH	BOTH OFF
5.	FIELD LH and RH	BOTH ON

If LH (or RH) OVERVOLT warning stays displayed

- 6. Verify good ammeter indications on restored alternator
- 7. Switch CROSS BUS on the restored alternator side
- 8. Refer to Single generator failure / overvoltage drill (Para 2.1)

If both LH and RH OVERVOLT warning stay displayed

6. FIELD LH and RH

BOTH OFF

BOTH OFF

BOTH ON

If engine starting battery modification is applied

7. EMERG BATT switch

ON

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	Encoder Altimeter	NAV 2	Stall Warning
		A/P	RH attitude indicator
		A/P Pitch Trim	

8. Land as soon as practical.

If engine starting battery modification is not applied

7. Land as soon as possible.

Equipment will be lost accordingly to the following table:

NOTE

The battery alone can supply electrical power for at least 30 minutes.

2.4. FAILED DOOR CLOSURE

In case of door opening / unlocking, related MAIN or REAR DOOR ALERT warning light turns ON.

ON THE GROUND

- 1. Passengers and crew seat belts
- 2. Affected door

<u>If door is open</u>

Fasten and tighten

Shut down

Check

Close and check

Verify correctly closed

- 3. Relevant engine
- 4. Affected door

If door is closed

3. Locking device

If down in unlocked position

4. Abort mission.

IN FLIGHT

Passengers and crew seat belts
 Affected door and locked device
 Fasten and tighten Verify correctly closed

If door is open or locking device is unlocked

3. Land as soon as possible

4th Edition, Rev. 0

2.5. PITOT HEATING SYSTEM FAILURE

When the Pitot Heating system is activated, the green PITOT HEAT advisory light is turned ON.

If the amber PITOT HEAT caution light turns OFF, then the Pitot Heating system is functioning properly. Anytime the amber PITOT HEAT caution light is ON at the same time the green PITOT HEAT light is ON, then the Pitot Heating system is not functioning properly.

- 1. Pitot heat switch OFF
- 2. Verify Pitot Heating circuit breaker is IN
- 3. Pitot heat switch ON
- 4. Check PITOT HEAT caution light:

If the amber light stays ON, assume a failure in the pitot heating system. Avoid visible moisture and OATs below 10 deg C.

2.6. COOLANT LIQUID LOW LEVEL

When the engine coolant liquid level goes under the lower limit, the related LH or RH LOW COOLANT is turned ON. This condition may lead to high CHT/CT. When the warning light turns ON, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

2. Affected engine *Reduce power s*

Reduce power setting to reduce CHT/CT up to the minimum practical


3. Land as soon as practical

If CHT/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 4)
- **5.** Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

4th Edition, Rev. 0

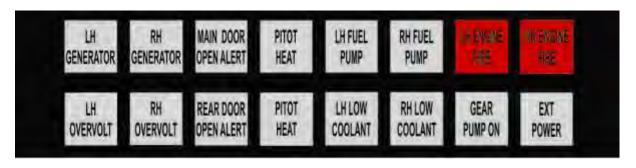
2.7. GEAR PUMP FAILURE

The GEAR PUMP ON caution light turns ON when the landing gear hydraulic pump is electrically supplied.

After the landing gear retraction, if the red TRANS light turns OFF and the GEAR PUMP ON caution stays turned ON, this could indicate a gear pump relay failure to ON.

If TRANS light is OFF

1. Continue the mission monitoring the caution light.


If TRANS light is ON

2. Landing gear is not locked in UP position

NOTE

The electrical gear pump, continuously supplied, causes a current absorption which does not affect the mission unless this failure is coupled with the overall electrical failure. In this case, the residual battery endurance may be consistently lower than 30 minutes.

2.8. ENGINE FIRE

In event of engine fire, LH or RH ENGINE FIRE warning light will turn ON. Refer to following procedures:

FIRE ON THE GROUND: FIRE DURING TAKEOFF RUN: FIRE IN FLIGHT: see Para. 8.1 see Para. 8.2 see Para. 8.3

3. ENGINE SECURING

Following procedure is applicable to shut-down one engine in flight:

1.	Throttle Lever	IDLE
2.	Ignition	BOTH OFF
3.	Propeller Lever	FEATHER
4.	Fuel Selector	OFF
5.	Electrical fuel pump	OFF

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT:	see Para. 6.5
SINGLE GENERATOR FAILURE:	see Para. 2.1
or BOTH GENERATOR FAILURE:	see Para. 2.2
INFLIGHT ENGINE RESTART:	see Para. 6.2
ONE ENGINE INOPERATIVE LANDING:	see Para. 6.6
or LANDING WITHOUT ENGINE POWER:	see Para. 10.1

4. **POWERPLANT EMERGENCIES**

4.1. **PROPELLER OVERSPEEDING**

The aircraft is fitted with propeller/governor set by MT-Propeller such a way that the maximum propeller rpm exceedance is prevented. In case of propeller overspeeding in flight, apply following procedure:

Throttle Lever
 Propeller Lever

3. RPM indicator

REDUCE power to minimum practical REDUCE as practical (*not in feathering*) *CHECK*

If it is not possible to decrease propeller rpm, apply *engine securing procedure* (see Para. 3) and **land as soon as possible a**pplying *one engine inoperative land-ing* procedure (See Para. 6.6).

Maximum propeller rpm exceedance may cause engine components damage. Propeller and engine shall be inspected in accordance with related Operators Manuals.

4.2. CHT/CT LIMIT EXCEEDANCE

If CHT/CT exceeds its limit, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- 3. Land as soon as practical

If CHT/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 4)
- **5.** Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

4.3. OIL TEMPERATURE LIMIT EXCEEDANCE

If oil temperature exceeds maximum limit (130°C):

OIL PRESS CHECK
 If oil pressure is within limits
 Affected engine
 Affected engine
 Reduce power setting to minimum applicable
 Keep propeller speed higher than 2000 RPM

If oil pressure does not decrease

INCREASE

4. Airspeed

NOTE

If oil temperature does not come back within limits, the thermostatic valve, regulating the oil flow to the heat exchangers, could be damaged or an oil leakage can be present in the oil supply line.

- 5. Land as soon as practical keeping the affected engine to the minimum necessary power
- 6. Monitor OIL PRESS and CHT/CT

if engine roughness / vibrations or erratic behaviour is detected:

- 7. Affected engine SECURE (see engine securing procedure on Para. 3)
- **8.** Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

Section 3 – Emergency procedures POWERPLANT EMERGENCIES

4.4. OIL PRESSURE LIMITS EXCEEDANCE

If oil pressure exceeds its lower or upper limit (0.8 - 7 bar), apply following procedure:

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

An excessive oil pressure value can be counteracted by decreasing propeller rpm.

1. OIL PRESS

CHECK

If oil pressure exceeds upper limit (7 bar)

2. Throttle Lever

first REDUCE affected engine power by 10% Keep low rpm

Propeller Lever
 OIL PRESS

CHECK (verify if within limits)

5. Land as soon as practical

If oil pressure is under the lower limit (0.8 bar)

2. Land as soon as practical

If oil pressure is continuously decreasing

- 3. Affected engine SECURE (see engine securing procedure Para. 3)
- 4. Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

4.5. LOW FUEL PRESSURE

If fuel pressure decreases below the lower limit (2.2 psi), apply following procedure:

1.	Fuel press	CHECK
2.	Fuel quantity	CHECK
3.	Fuel consumption	MONITOR

If a fuel leakage is deemed likely

4. Land as soon as possible.

If a fuel leakage can be excluded:

- 4. Electrical fuel pump ON
- 5. Feed the affected engine by means of opposite side fuel tank

If pressure does not come back within the limits

6. Land as soon as practical

5. OTHER EMERGENCIES

5.1. EMERGENCY DESCENT

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15°.

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

1.	Power levers	IDLE
2.	Flaps	UP
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLO/VLE

5.2. TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON if necessary
2.	Standby attitude indicator switch	ON
3.	MASTER SWITCH	OFF
4.	FIELD LH and RH	BOTH OFF
5.	MASTER SWITCH	ON
6.	FIELD LH and RH	BOTH ON

If failure persists

9. EMERG BATT switch

ON (if engine starting battery installed)

10. Land as soon as possible applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

5.3. STATIC PORTS FAILURE

In case of static ports failure, the alternate static port in the cabin (shown below) must be activated.

- 1. Cabin ventilation
- 2. ALTERNATE STATIC PORT VALVE
- 3. Continue the mission

OFF (hot and cold air) OPEN

5.4. UNINTENTIONAL FLIGHT INTO ICING CONDITIONS

- 1. Carburettor heat BOTH ON
- 2. Pitot heat ON
- 3. Fly as soon as practical toward a zone clear of visible moisture, precipitation and with higher temperature, changing altitude and/or direction.
- 4. Control surfaces *Move continuously to avoid locking*
- 5. Propellers rpm INCREASE to prevent ice build-up on the blades

In event of ice build-up in correspondence of wing leading edges, stall speed increases.

Ice build-up on wing, tail fin or flight control surfaces unexpected sudden roll and/or pitch tendencies can be experienced and may lead to unusual attitude and loss of aircraft control.

Do not use Autopilot when icing formation is suspected or detected.

5.5. CARBURETTOR ICING

DURING TAKEOFF

The carburettor icing in "full throttle" mode is unlikely.

Take off in known or suspected icing condition is forbidden.

Therefore, and in order to dispose of full engine take off power, the take-off must be performed with carburettor heating OFF.

IN FLIGHT

Carburettor icing is considered probable when external air temperature is below 15° C and visible air moisture (clouds, mist, haze or fog) or atmospheric precipitation are present.

Generally, an OAT-to-dew point temperature spread lower than 10°C and OAT less than 15°C with visibility lower than 5 km is a positive indication of likely icing formation condition.

Should an inadvertent flight into known or forecast icing condition happen carburettor heating should be selected "ON" as soon as possible: the earlier carburettors are warmed the better the chances not to form ice and avoid engine loss or reduction of power.

Keep Carb Heating "ON" until engine power is restored and area of possible icing condition is exited.

Carburettor Heating to "ON" will cause engine RPM reduction of about 100 RPM, causing a sensible available engine power decrease.

5.6. FLAPS CONTROL FAILURE

DURING TAKEOFF

Flap UP take off, requires a T/O distance (50 ft height obstacle distance) increased by about 20%.

1. Airspeed

Keep below 93 KIAS

2. Land as soon as practical

DURING APPROACH/LANDING

If the flaps control fails, consider the higher stall speed (see Section 5, Para 6 (Stall Speed) and an increased landing distance of about 25%.

1. Airspeed

- Keep over 75 KIAS
- 2. Land as soon as practical on a runway of appropriate length

6. ONE ENGINE INOPERATIVE PROCEDURES

The ineffectiveness of one engine results in asymmetric traction which tends to yaw and bank the aircraft towards the inoperative engine. In this condition it is essential to maintain the direction of flight compensating the lower traction and counteracting the yawing effects by mean of rudder pedals. To improve directional control, it is advisable to bank the aircraft of about 5° to the side of the operating engine.

In addition, reduced available overall power and extended control surfaces will lead to a performances drop: a quick pitch attitude reduction will allow to keep a minimum safety airspeed.

The higher is the airspeed the better will be lateral and directional control efficiency: never allow airspeed to drop below V_{MCA} .

Best residual climb performances in OEI (One Engine Inoperative) condition have been recorded in Flap Up configuration and at V_{YSE} , which is marked as a Blue Line on the Airspeed indicator (calculated for maximum Take Off Weight and Sea, Level ISA condition) For actual condition V_{YSE} refer to Section 5 Para. 13 (One engine rate of climb).

 V_{XSE} is actually very close to V_{YSE} in any condition, thus best climb performance will also be associated with best climb angle (gradient) performance. Refer to Section 5 Para. 14, One-Engine Rate of Climb at V_{xSE} , for relevant data.

6.1 CHARACTERISTIC AIRSPEEDS WITH ONE ENGINE INOPERATIVE

In case of one engine inoperative condition (OEI), pilot shall take into account the airspeeds shown below:

Conditions	Spec (KIA	
Minimum aircraft control speed with one engine inoperative and flaps set to T.O. (V_{MC})	62	
Post note of alimb aread $OEL(V_{ij})$	MTOW 1180 kg	MTOW 1230 kg
Best rate-of-climb speed OEI (V_{YSE})	80	84
Best gradient speed OEI (V _{XSE})	79	83

Reference is made to MTOW, 1180 kg and 1230 kg, at Sea Level and ISA condition (if Supplement A19 - Increased MTOW @1230 KG - is applicable).

6.2 **INFLIGHT ENGINE RESTART**

After:

- mechanical engine seizure;
- fire;
- *major propeller damage*

engine restart is not recommended.

- Carburettor heat 1.
- Electrical fuel pump 2.
- Fuel quantity indicator 3.
- **Fuel Selector** 4.
- 5. FIELD
- Ignition 6.
- 7. Operating engine Throttle Lever
- **Stopped engine Throttle Lever** 8.
- **Stopped engine Propeller Lever** 9.
- 10. Start push-button inoperative engine
- 11. Propeller Lever inoperative engine
- 12. FIELD
- 13. Engine throttle levers

ON if required ON CHECK CHECK (Crossfeed if required) **OFF** BOTH ON SET as practical **IDLE** FULL FORWARD PUSH SET at desired rpm *ON* (check for positive ammeter) *SET as required*

If engine restart is unsuccessful

14. EMERG BATT switch

ON (if starting battery installed)

15. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

16. Affected engine

SECURE (see engine securing procedure *Para. 3*)

17. Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

6.3 **ENGINE FAILURE DURING TAKEOFF RUN**

BEFORE ROTATION: ABORT TAKE OFF

- **Throttle Lever** 1.
- 2. Rudder
- 3. **Brakes**

BOTH IDLE Keep heading control As required

When safely stopped:

- Failed Engine Ignition 4.
- Failed Engine Field 5.

BOTH OFF

OFF OFF

Failed Engine Electrical fuel pump 6.

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

- **Operating engine Throttle Lever** 1.
- **Operating engine Propeller Lever** 2.
- 3. Heading
- Attitude 4.
- **Inoperative engine Propeller Lever** FEATHER 5.
- Landing gear control lever 6.
- 7. Airspeed
- Flaps 8.

FULL POWER

FULL FORWARD Keep control using rudder and ailerons *Reduce as appropriate to keep* airspeed over 62 KIAS UP V_{XSE}/V_{YSE} as required 0•

<u>At safe altitude</u>

- 9. <u>Inoperative engine</u>
- 10. Operative engine Electrical fuel pump Check ON
- 11. Operating engine
- 12. Operating engine Fuel Selector

Confirm and SECURE Check ON Check engine instruments Check correct feeding (crossfeed if needed)

If engine restart is recommended:

13. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

13. Land as soon as possible

14. One engine inoperative landing procedure. see Para. 6.6

Following:

- mechanical engine seizure;
- fire;

- major propeller damage

engine restart is not recommended.

ENGINE FAILURE DURING CLIMB 6.4

- Autopilot 1.
- Heading 2. Attitude
- 3.

OFF

Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS

- 4. Operating engine Throttle Lever
- Operating engine Propeller Lever 5.
- Operative engine Electrical fuel pump 6.
- 7. Inoperative engine Propeller Lever
- Inoperative engine 8.

FULL THROTTLE FULL FORWARD Check ON FEATHER Confirm and SECURE

If engine restart is possible:

9. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- Land as soon as possible 9.
- 10. One engine inoperative landing procedure. see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

6.5. ENGINE FAILURE IN FLIGHT

- 1. Autopilot
- Heading
 Attitude

- OFF Keen
- Keep control using rudder and ailerons Adjust as appropriate to keep airspeed over 62 KIAS
- 4. Operating engine
- 5. Operative engine Electrical fuel pump
- 6. Operating engine Fuel Selector

Monitor engine instruments Check ON Check correct feeding (crossfeed if needed)

If engine restart is possible:

7. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- 7. Land as soon as possible
- 8. One engine inoperative landing procedure. *see Para. 6.6*

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12 (Rate of climb with One Engine Inoperative).

6.6. One engine inoperative landing

Thoroughly evaluate feasibility and plan in advance Single Engine Go-Around capabilities and expected climb gradient should a Missed Approach / balked landing be necessary. Refer to Section 5, Para 13 and 14 (One-engine Rate of Climb at V_{YSE} and V_{XSE})

Autopilot must be kept OFF

- 1. Seat belts
- 2. Landing lights
- 3. Operating engine Fuel Selector
- 4. <u>Inoperative engine</u> Propeller Lever
- 5. <u>Inoperative engine</u>
- 6. Operative engine Electrical fuel pump

When on final leg:

7. Flap

8. Landing gear

9. Approach Airspeed

10. Touchdown speed

Tightly fastened As required Check correct feeding/crossfeed if needed CHECK FEATHERED CHECK SECURED ON

T/O Select DOWN and check three green lights on V_{YSE} 70 KIAS

INTENTIONALLY LEFT BLANK

7. LANDING GEAR FAILURES

7.1. EMERGENCY LANDING GEAR EXTENSION

NOTE

Landing gear extension failure is identified by means of the green lights not illuminated: relevant gear leg may not be fully extended and/or locked.

Light bulb operating status can be verified by pressing the LDG push-to-test button. Additionally, the red light TRANS indicates that one or more legs are moving and the PUMP ON amber light on the annunciator panel indicates the hydraulic gear pump is operating.

1. Airspeed

below applicable VLO/VLE

- 2. Landing gear control lever
- 3. Emergency gear extension access door *REMOVE*
- 4. RH control lever
- 5. Wait at least 20 seconds

DOWN REMOVE ROTATE 90° counterclockwise

NOTE

Main Landing Gear legs green lights may be turned on, thus indicating effective main gear legs blocked in down position by mere effect of gravity force.

- 6. LH control lever
- 7. Land as soon as practical

ROTATE 180° counterclockwise

4th Edition, Rev. 0

The emergency landing gear extension operation takes about 20" sec.

Section 3 – Emergency procedures LANDING GEAR FAILURES

7.2. COMPLETE GEAR UP OR NOSE GEAR UP LANDING

The following procedure applies if Nose Landing Gear is not extended and locked even after emergency extension procedure.

A Nose Landing Gear up leg not down and locked might lead to a hazardous situation, especially on uneven runways.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

Tightly fastened

UP

If a complete Landing Gear up or a Nose Landing Gear up position is reported:

Preparation

- 1. Reduce fuel load if time and conditions permit
- 2. Crew and passengers safety belts
- 3. Landing gear control lever
- 4. Green lights and TRANS light
- 5. Flap setting

Before ground contact:

6. LH and RH Fuel Selector

- 7. LH and RH Electrical fuel pump
- 8. Ignitions

On touch down:

- 9. Landing attitude
- 10. Touchdown speed
- 11. Aircraft nose

After aircraft stops:

12. FIELD LH and RH

13. MASTER SWITCH

CHECK OFF plan approach with Flap Land BOTH OFF

BOTH OFF ALL OFF

slight nose-up and wings levelled, as low as 50 KIAS with flap gently lower as speed bleeds off

BOTH OFF OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

14. Aircraft Evacuation

carry out if necessary

Section 3 – Emergency procedures

LANDING GEAR FAILURES

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

7.3. PARTIAL MAIN LG EXTENSION

The following procedure applies if one or both Main Landing Gear legs are not completely extended and locked even after emergency extension procedure.

A partial gear landing (RH and/or LH leg not down and locked) might turn into a hazardous situation, especially on uneven runways.

If possible try to obtain a symmetric gear extension (e.g. by trying further landing gear retraction) in order to avoid swerving after touchdown. A gear up landing is generally considered safer.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

Preparation

- 1. Reduce fuel load if time and conditions permit
- 2. Crew and passengers safety belts
- 3. Landing gear control lever
- 4. Green lights and TRANS light
- 5. Flap setting

Tightly fastened UP CHECK OFF plan approach with Flap Land

BOTH OFF

BOTH OFF

ALL OFF

If partially extended landing gear is confirmed:

Before ground contact:

- 6. LH and RH Fuel Selector
- 7. LH and RH Electrical fuel pump
- 8. Ignitions

On touch down:

- 9. Align for approach on the runway centreline
- 10. Touchdown speedas low as 50 K.
- 11. Touchdown
- 12. Heading and direction *der/steering control*
- 13. Retracted leg

as low as 50 KIAS on the extended gear only maintain applying appropriate aileron and rud-

keep off the ground as long as possible

4th Edition, Rev. 0

Section 3 – Emergency procedures

LANDING GEAR FAILURES

After aircraft stops:

14. FIELD LH and RH

15. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

BOTH OFF

OFF

16. Aircraft Evacuation

carry out

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

7.4. **FAILED RETRACTION**

- Airspeed 1.
- 2. Landing gear control lever

A Landing Gear lever recycle (further retraction attempt) may result in a final partial Landing Gear Extension, which may then compromise safe landing aircraft capability.

DOWN

3. Landing Gear lights Check

If a safe landing configuration is obtained (3 greens)

Land normally 4.

If a safe landing gear configuration is not obtained:

- Emergency LG extension procedure Apply (See Para. 7.1) 4.
- Land as soon as practical 5.

7.5. UNINTENTIONAL LANDING GEAR EXTENSION

An unwanted landing gear extension, with at least one leg moving downward, may be caused by hydraulic fluid loss and it is signaled by

- significant aerodynamic noise increase;
- *light and counteractable nose down pitch moment;*
- red TRANS light turned on.
- 1. Airspeed
- Landing gear control lever 2.

Keep below applicable VLO/VLE DOWN Check

Keep below applicable VLO/VLE

Landing Gear lights 3.

If a safe landing configuration is obtained (3 greens)

Land normally 4.

If a safe landing gear configuration is not obtained:

- Emergency LG extension procedure Apply (See Para. 7.1) 4.
- Land as soon as practical 5.

INTENTIONALLY LEFT BLANK

8. SMOKE AND FIRE OCCURRENCE

8.1	ENGINE FIRE ON THE GROUND)
1.	Fuel Selectors	BOTH OFF
2.	Ignitions	ALL OFF
3.	Electrical fuel pumps	BOTH OFF
4.	Cabin heat and defrost	OFF
5.	MASTER SWITCH	OFF
6.	Parking Brake	ENGAGED
7.	Aircraft Evacuation	carry out immediately
	or passenger doors are	emergency exit to escape in case pilot blocked, watch for engine hot parts, pil spills. Leave aircraft in upwind di-

KTECNAM P2006T - Aircraft Flight Manual Page 3 - 39

8.2 ENGINE FIRE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. Rudder
- 3. Brakes

BOTH IDLE *Keep heading control As required*

carry out immediately

With aircraft under control

- 4. Fuel Selector
- 5. **Ignitions**
- 6. Electrical fuel pump
- 7. Cabin heat and defrost
- 8. MASTER SWITCH
- 9. **Parking Brake**
- 10. Aircraft Evacuation

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

BOTH OFF

BOTH OFF

ENGAGED

ALL OFF

OFF

OFF

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

1.	Operating engine Throttle Lever	FULL POWER
2.	Operating engine Propeller Lever	FULL FORWARD
3.	Heading	Keep control using rudder and ailerons
4.	Attitude	Reduce as appropriate to keep airspeed over 62 KIAS
5.	Fire affected engine Propeller Lever	FEATHER
6.	Landing gear control lever	UP
7.	Airspeed	V _{XSE} /V _{YSE} as required
8.	Flaps	0•

4th Edition, Rev. 0

SMOKE E FIRE OCCURRENCE

BOTH OFF

OFF

Confirm and OFF

Confirm and OFF

Confirm and BOTH OFF

At safe altitude

- 9. Cabin heat and defrost
- 10. <u>Fire affected engine</u> Fuel Selector
- 11. <u>Fire affected engine</u> Ignitions
- 12. <u>Fire affected engine</u> Electrical fuel pump
- 13. <u>Fire affected engine</u> FIELD
- 14. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

BOTH OFF

over 62 KIAS

OFF

OFF

BOTH IDLE

ALL OFF

BOTH OFF

ENGAGED

carry out immediately

Confirm and OFF

Confirm and BOTH OFF

Confirm and FEATHER

Confirm and FULL FORWARD

Keep control using rudder and ailerons

Adjust as appropriate to keep airspeed

OFF

OFF

OFF

OPEN

8.3 ENGINE FIRE IN FLIGHT

- 1. Cabin heat and defrost
- 2. Autopilot
- 3. <u>Fire affected engine</u> Fuel Selector
- 4. Fire affected engine Ignition
- 5. <u>Fire affected engine</u> Throttle Lever
- 6. <u>Fire affected engine</u> Propeller Lever
- 7. <u>Fire affected engine</u> Electrical fuel pump
- 8. Heading
- 9. Attitude
- 10. Fire affected engine Field

11. Cabin ventilation

12. Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

8.4 ELECTRICAL SMOKE IN CABIN ON THE GROUND

- 1. MASTER SWITCH
- 2. Cabin heat and defrost
- 3. **Throttle Lever**
- 4. **Ignitions**
- 5. **Fuel Selector**
- 6. **Parking Brake**
- 7. Aircraft Evacuation

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

8.5	ELECTRICAL SMOKE IN CABIN DURING FLIGHT	
1.	Cabin ventilation	OPEN
2.	Emergency light	ON
3.	Standby attitude indicator switch	ON
4.	Gain VMC conditions as soon as possible	
	Gain VMC conditions as soon as possible case of cockpit fire: Fire extinguisher	use toward base of flames

A tripped circuit breaker should not be reset.

If smoke persists, shed electrical supply in order to isolate faulty source by:

- 6. FIELD LH and RH
- 7. AVIONICS LH and RH

8. CROSS BUS LH and RH

BOTH OFF BOTH OFF BOTH OFF

A fully charged battery can supply electrical power for at least 30 minutes.

If faulty source is found:

9. It may be possible to restore non faulty power sources (one at a time)

If smoke persists:

Before total electrical system shutdown consider gaining VMC condition, at night set personal emergency light on.

Only emergency light and emergency ADI will be electrically powered.

All radio COM and NAV, Landing Gear lever (normal mode) and indication lights, electrical trims and flaps will be unserviceable.

9. MASTER SWITCH 10. Land as soon as possible OFF

When on ground:

11. Aircraft Evacuation

carry out as necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

9. UNINTENTIONAL SPIN RECOVERY

WARNING

Spin behaviour has not been demonstrated since certification process does not required it for this aircraft category.

Intentional spin is forbidden.

Stall with one engine inoperative is forbidden.

Should an unintentional spin occur, the classic recovery manoeuvre is deemed as being the best action to undertake:

Both engines throttles
 Flight Controls
 Rudder

idle centralize fully against rotation until it stops

INTENTIONALLY LEFT BLANK

10. LANDING EMERGENCIES

10.1 LANDING WITHOUT ENGINE POWER

In case of double engine failure both propellers should be feathered to achieve maximum efficiency. Best glide speed is attained with flap UP and equals V_Y for current aircraft mass and air density altitude. Refer to Section 5, Para. "Enroute Rate of Climb".

Normal landing gear extension requires MASTER switch ON, an efficient battery and takes around 20 seconds.

LG selection should be appropriately anticipated when sure on *fi*nal.

Flap can be set to T/O or LAND when landing is assured on final to reduce landing ground roll on short field.

MTOW 1180kg

 $V_Y = 83 KIAS$

Touchdown speed can be as low as 50 kt with flap down.

UP

Select

- 1. Airspeed
- 2. Flaps

3. Emergency landing field

WARNING

Emergency landing strip should be chosen considering surface condition, length and obstacles. Wind can be guessed by smoke plumes direction and tree tops or grass bending. Select touchdown direction according to the furrows of a plowed field, not across.

FASTEN and tighten

Set when landing is assured

DOWN when landing is assured

- 4. Safety belts
- 5. Flaps
- 6. Landing gear control lever

To reduce landing gear extension time, evaluate use of emergency control system which requires about 20 sec.

4th Edition, Rev. 0

MTOW 1230 kg

 $V_Y = 84 KIAS$

Before touch down

7.	Fuel Selector	BOTH OFF
8.	Electrical fuel pump	BOTH OFF
9.	Ignitions	ALL OFF

After aircraft stops:

10. MASTER SWITCH

OFF

When stopped

11. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

4th Edition, Rev. 0

10.2 LANDING WITH NOSE LANDING GEAR TIRE DEFLATED

If possible, as a nose landing gear flat tire condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If Nose Landing Gear flat tire is confirmed:

Preparation

- 1. Crew and passengers safety belts
- 2. If time permits
- 3. Flap setting

Before ground contact:

- 4. Fuel Selector
- 5. Electrical fuel pump
- 6. Ignitions

On touch down:

- 7. Landing attitude
- 8. Touchdown speed
- 9. Aircraft nose

After aircraft stops:

10. FIELD LH and RH

11. MASTER SWITCH

Tightly fastened Burn fuel to lower landing weight plan approach with Flap Land

BOTH OFF BOTH OFF ALL OFF

slight nose-up and wings levelled, as low as 50 KIAS with flap gently lower as speed bleeds off

BOTH OFF OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

12. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

4th Edition, Rev. 0

10.3 LANDING WITH A KNOWN MAIN LANDING GEAR TIRE DEFLATED

An asymmetrical landing gear tire condition (RH and/or LH tires deflated) might turn into a hazardous situation, especially on uneven runways.

WARNING

If possible, as a landing gear tires condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If a main Landing Gear flat tire is confirmed:

Preparation

- 1. Crew and passengers safety belts
- 2. Flap setting
- 3. *Approach alignment*

Before ground contact:

- 4. LH and RH Electrical fuel pump
- 5. LH and RH Fuel Selector
- 6. Ignitions

On touch down:

- 7. Touchdown speed
- 8. Touchdown
- 9. Heading and direction
- 10. Flattened tire

Tightly fastened plan approach with Flap Land Plan to land on the side of the good tire (drag in the middle)

BOTH OFF BOTH OFF ALL OFF

as low as 50 KIAS on the good tire gear only maintain applying appropriate aileron and rudder/steering control keep off the ground as long as possible

After aircraft stops (or if runway departure is imminent):

- 11. FIELD LH and RH
- 12. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

BOTH OFF

OFF

13. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

4th Edition, Rev. 0

Section 3 – Emergency procedures LANDING EMERGENCIES

10.4 LANDING WITHOUT BRAKES

If possible, select an airport with suitable runway length. Otherwise, evaluate the possibility to perform a gear up landing (refer to procedure reported on Para. 7.2). In the latter case consider the

1. Safety belts

FASTEN

After touch down if runway is deemed insufficient to decelerate:

increasing hazard of an uneven pavement.

2. Fuel Selector	BOTH OFF
3. Electrical fuel pumps	BOTH OFF
4. Ignitions	ALL OFF
5. FIELD LH and RH	BOTH OFF
6. MASTER SWITCH	OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

Before end of runway or if runway departure is imminent:

7. Landing gear control lever

UP

After aircraft stops:

8. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

4th Edition, Rev. 0

11. AIRCRAFT EVACUATION

Leave the aircraft when engines are fully stopped. Watch for engine hot parts and fuel, hydraulic fluid or oil spills when using fuselage doors. If fuselage doors are unserviceable escape through the ditching emergency exit

In case of engine fire escape from opposite or upwind aircraft side.

Verify (if not yet performed):

1.	Fuel Selectors	BOTH OFF
2.	Ignitions	ALL OFF
3.	Electrical fuel pumps	BOTH OFF
4.	MASTER SWITCH	OFF
5.	Parking Brake	ENGAGED
6.	Leave the aircraft using emergency exits	

12. DITCHING

direction of motion parallel to the wave at the minimum possible speed. Keep the nose up as long as possible. Once in the water, the aircraft shall be evacuated through the ditch-

Once in the water, the aircraft shall be evacuated through the ditching emergency exit, if available put life vest on and set dinghy out first. Inflate them only outside the aircraft.

Contact with water shall happen with aircraft longitudinal axis and

If available, try to approach any existing ship in the vicinity in order to be rapidly located and rescued right after ditching.

UP

FULL

1. Landing gear

WARNING

2. Safety belts

3. Flaps

Before water impact

- 4. Fuel Selector
- 5. Electrical fuel pump
- 6. Ignitions
- 7. MASTER SWITCH
- 8. FIELD LH and RH
- 9. Impact speed

Aircraft evacuation

- 10. Emergency exit handle
- 11. Latch door
- 12. Life vests
- 13. Evacuate the aircraft

BOTH OFF BOTH OFF ALL OFF OFF BOTH OFF 50 KIAS

Tighten and fastened

rotate clockwise push outward don

4th Edition, Rev. 0

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

SECTION 4 – NORMAL PROCEDURES

INDEX

1.	Introduction
1.1.	Normal ops general recommendations3
2.	Airspeeds5
2.1.	normal operations5
2.2.	single engine training5
3.	Normal procedures checklist7
3.1.	Recommendations for cold weather operations7
3.2.	Pre-flight check - Aircraft walk-around9
3.3.	Cockpit inspections 14
3.4.	Engine starting16
3.5.	Before taxiing
3.6.	Taxiing
3.7.	Prior to takeoff 19
3.8.	Line-up
3.9.	Takeoff and climb 21
3.10	. Cruise
3.11	. Turbulent air operation 22
3.12	. Descent and approach 22
3.13	. Before landing 23
3.14	. Balked landing/missed approach 23
3.15	. After landing 24
3.16	. Parking/shut down
3.17	. Postflight checks
4.	Ground towing, parking and mooring27
4.1	Towing
4.2	Parking
4.3	Mooring

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

Section 4 describes checklists and recommended procedures for the conduct of normal operations for *P2006T* aircraft.

1.1. NORMAL OPS GENERAL RECOMMENDATIONS

The following points should be always brought to attention to pilot/instructor/operator when operating a Tecnam aircraft equipped with variable pitch propeller:

1. Propeller governor ground check.

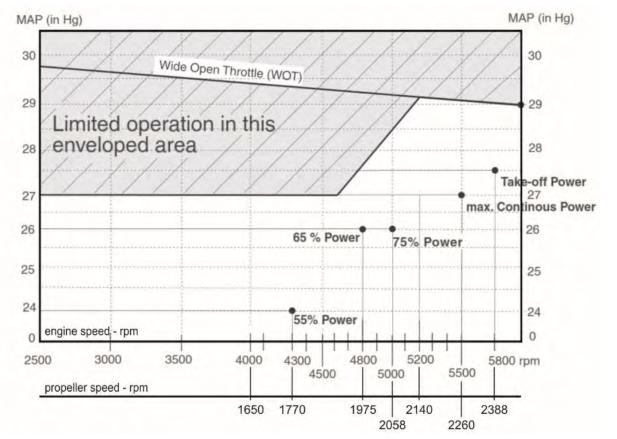
As prescribed by the propeller/governor manufacturer, a drop of 400/500 propeller RPM should be produced during this check. Its aim is to confirm the governor efficiency, not its complete feathering function.

Especially during the first cycle of propeller lever pulling, the governor tendency is to respond to the input with consistent delay, causing the pilot to continue moving back the propeller lever until an abrupt RPM change is observed. This causes an excessive drop in propeller speed that may reach up to 800 RPM in some cases and, consequently, a drop of up to 2000 engine shaft RPM. The long term result is a major wear of engine gearbox, bushings and pistons. In some cases, it may also result in detonation.

In order to avoid these long term adverse effects, the governor ground check should be performed by slowly and gently pulling the propeller lever. The purging cycle should be repeated 3 times, making sure that the governor closely and firmly controls the rpm.

The following recommendations have to be followed during the test:

- propeller speed drops shall be of 400/500 propeller RPM


- the cycle shall be repeated 3 times
- the pilot shall be ready to push the propeller lever if a drop of >500 RPM is recorded

2. Power changes.

When power setting changes are required in any flight condition, remember the following correct procedure:

- > Power increase = FIRST Prop THEN Map
- > Power reduction = FIRST Map THEN Prop

Useful guideline chart that could be used for best propeller/manifold combination is following reported:

3. Suitable Fuels.

Tecnam remember operators to fill the aircraft with approved and suitable fuels. Use of not approved/unknown fuels may cause damages to the engine.

ONLY USE APPROVED FUELS

For details refer to Section 2 of this manual (or applicable Supplement) and latest issue of Rotax SI-912-016

2. AIRSPEEDS

2.1. NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations, with reference to both MTOW: 1180 kg and 1230 kg (if Supplement A19 - Increased MTOW @1230 KG - is applicable).

		МТ	OW
	FLAPS	1180kg	1230 kg
Rotation Speed (in takeoff, V_R)	T/O	64 KIAS	65 KIAS
Best Angle-of-Climb Speed (V_X)	0°	73 KIAS	72 KIAS
Best Rate-of-Climb speed (V_Y)	0°	80 KIAS	84 KIAS
Approach speed	T/O	90 KIAS	90 KIAS
Final Approach Speed	FULL	70 KIAS	71 KIAS
Manoeuvring speed (V_A)	0°	118 KIAS	122 KIAS
Never Exceed Speed (V_{NE})	0°	167 KIAS	171 KIAS

2.2. SINGLE ENGINE TRAINING

 V_{SSE} is a speed selected as training aid for pilots in the handling of multi-engine aircraft. It is the minimum speed for intentionally rendering on engine inoperative in flight. This minimum speed provides the margin the manufacturer recommends for us when intentionally performing engine inoperative manoeuvres during training. The best practice to perform single engine training is to retard one engine to the flight parameters equivalent to a dead engine.

A simulated feather condition is obtained with propeller lever full forward and throttle lever set at 13.5 in Hg MAP at 70-90 KIAS and 2000-4000 ft (density altitude).

Recommended safe simulated OEI speed (V_{SSE})	70 KIAS
--	---------

NOTE

Keep speed above V_{SSE} for simulated OEI training operations.

In normal operations, shutting down an engine for training shall not become a habit, in particular for safety reasons and in order to optimise training; engine shutdown to perform OEI shall be executed only when required by regulations (e.g. during flight check, skill tests or demonstration as per 14CFR Part61 or equivalent rule).

COSTRUZIONI AERONAUTICHE

The continuous operation of engine securing for training may indeed cause long term damages to the engine itself due to the high load coming from propeller (which is in feathering angle during the engine re-starting).

3. NORMAL PROCEDURES CHECKLIST

3.1. **Recommendations for cold weather operations**

Engine cold weather operation

Refer to Rotax 912 Series Operators Manual, last issue, providing instructions for operating media (lubricant and coolant specifications) to be used in cold weather operation.

Parking

When the airplane is parked in cold weather conditions and it is expected to be soaked at temperatures below freezing, some precautions need to be taken.

Clear snow, slush, and ice in the parking area, or at least clear the area around the tires to prevent them from freezing to the ground. Apply plugs on Pitot and static ports.

The exposed airframe parts should be protected, especially the engines, the wheels, the blades and the gears against the snow or ice accumulation. Water and other freezable liquids should be removed from the airplane.

Standing water that could freeze should be removed from critical parts, as flaps and ailerons hinges, trim tabs hinges, drain points, LG doors, cabin doors etc.

With an ambient temperature of below -20°C, remove battery and store in a warm dry place; additionally in order to prevent a heavy discharge and to increase the battery life time, it is recommended to use an external power source for engine starting at temperatures lower than -15° C.

When wheel brakes come in contact with ice, slush, or snow with freezing conditions, the brake disk may freeze: park the aircraft with parking brake control knob in OFF position and ensure the aircraft is properly chocked and moored.

In any case, when the probability of ice, snow, or heavy frost is forecast, the use of a hangar is strongly recommended.

An external inspection of the aircraft is performed before each flight, as prescribed on Section 3.1.

For cold weather operations, the crew must focus on the check of following parts of airplane (free of snow/ice/standing water).

- control surfaces
- fuselage
- wings
- vertical and horizontal stabilator
- stall warning switch
- engine inlets
- engines draining points
- propeller blades
- LG doors
- Pitot, and static ports
- fuel tank vents

Tires show low pressure in cold weather: the required adjustments to inflation pressure should be performed on tires cooled to ambient temperature.

If the crew detects ice, anti-icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

Removal of snow/ice accumulations is necessary prior to take-off because this will seriously affect airplane performance. Aircraft with ice/snow accumulation is not cleared for flight.

If the aircraft must be operated in cold weather conditions within the range -25°C to -5°C, it is suggested to perform following procedure in order to speed up the engine warm-up:

- Tow the airplane in a warm hangar (warmer than -5°C);
- Let airplane temperature stabilize;
- Check pressure in hydraulic system, recharge if necessary;
- Heat the cabin to a suitable value to avoid windshield frost in flight; an electrical fan heater may be used inside the cabin;
- Tow airplane outside and perform engine starting.

3.2. PRE-FLIGHT CHECK - AIRCRAFT WALK-AROUND

To perform the aircraft walk-around, carry out the checklists according to the pattern shown in Figure 4-1.

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

Visual inspection is defined as follows: check for defects, cracks, delamination, excessive play, unsafe or improper installation as well as for general condition, presence of foreign objects, slippage markers etc. For control surfaces, visual inspection also involves additional check for freedom of movement. Always check the ground in the area of the aircraft for evidence of fuel, oil or operating fluids leakages.

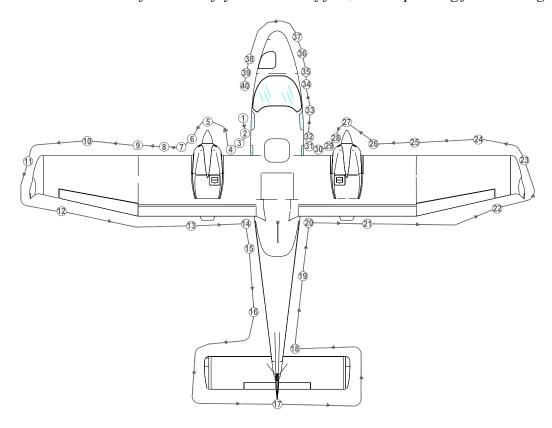


Figure 4.1

Section 4 – Normal procedures NORMAL PROCEDURES CHECKLIST 4th Edition, Rev. 0

1	Pilot door and cabin	Check door for integrity. Turn ON the Mas- ter Switch and check Stall Warning switch for operation and condition; check lighting of Landing/Taxi/Nav/Strobe lights then turn OFF the Master Switch.
2	Left main landing gear	Check fuselage skin status, tire status (cuts, bruises, cracks and excessive wear), slip- page markers integrity, gear structure and shock absorber, hoses, gear door attach- ments and gear micro-switches. There should be no sign of hydraulic fluid leakage.
3	Wheel chock	Remove if employed
4	Propeller and spinner	The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fixing and lack of play between blades and hub.
5	Left engine nacelle	Perform following inspections:
		 a) Check the surface conditions. b) Nacelle inlets and exhausts openings must be free of obstructions. If inlet and outlet plugs are installed, they should be removed. c) Check radiators. There should be no indication of leakage of fluid and they have to be free of obstructions. d) Only before the first flight of a day: (1) Verify coolant level in the expansion tank, replenish as required up to top (level must be at least 2/3 of the ex- pansion tank). (2) Verify coolant level in the overflow bottle through the slot under the na- celle: level must be between min. and max. mark. Replenish if re- quired removing the upper cowling; after that, install upper cowling checking for interferences with radi- ators.
		(3) Turn the propeller by hand to and fro, feeling the free rotation of 15°or 30° before the crankshaft starts to

4th Edition, Rev. 0

rotate. If the propeller can be turned

between the dogs with practically no friction at all further investigation is

		 necessary. Turn propeller by hand in direction of engine rotation several times and observe engine for odd noises or excessive resistance and normal compression. e) Check oil level and replenish as required. Prior to oil check, switch off both ignitions circuits and turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank. This process is finished when air is returning back to the oil tank and can be noticed by a murmur from the open oil tank. Prior to long flights oil should be added so that the oil level reaches the "max" mark. f) Drain off Gascolator for water and sediment (drain until no water comes off). Then make sure drain valve is closed. g) Check drainage hoses clamps h) Verify all parts are fixed or locked. i) Verify all inspection doors are closed.
6	Air induction system	Check engine air inlet for integrity and cor- rect fixing. The air intake filter must be free of obstructions.
7	Left fuel tank	Check that the refuelling port cap is proper- ly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Verify the tank vent outlet is clear.
8 9	Landing and taxi lights Left wing leading edge	Visual inspection Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for condi- tion and free of obstruction. Check stall strip.
10 11	Left wing top and bottom panels Left winglet, nav and strobe lights, static discharge wick	<i>Visual inspection</i> <i>Check for integrity and fixing</i>
12	Left aileron and balance mass	Visual inspection, remove tie-down devices and control locks if employed.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page 4 - 12

13 Left Flap and hinges Visual inspection *Remove protective cap – Visual inspection* 14 Left static port 15 *Check for integrity* Antennas 16 Gear pump, external power and Check emergency landing gear extension battery compartment system pressure (low pressure limit: 20 bar), external power and battery compartments closure. 17 Check the actuating mechanism of control Horizontal and vertical empennage and tabs. Static discharge surfaces and the connection with related wicks. tabs. Check wicks for integrity. Remove tiedown device if employed. 18 Stabilator leading edge *Check for integrity* 19 Fuselage top and bottom skin Visual inspection Right static port 20 *Remove protective cap – Visual inspection* 21 **Right Flap and hinges** Visual inspection 22 Right aileron and balance weight Visual inspection, remove tie-down devices and control locks if employed. 23 Right winglet, nav and strobe *Check for integrity and fixing and lighting* lights, static discharge wick 24 Right wing top and bottom pan-Visual inspection els 25 Right wing leading edge Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for condition and free of obstruction. Check stall

strip.

	P2006T -	Aircraft	Flight	Manual	Page 4 - 13
--	----------	----------	--------	--------	-------------

26	Right fuel tank	Check that the refuelling port cap is proper- ly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Verify the tank vent outlet is clear.
27	Propeller and spinner:	The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fix- ing and lack of play between blades and hub.
28	Right engine nacelle	<i>Apply check procedure reported in the walk-</i> <i>around station 5 and 6</i>
29	Passenger door and cabin	Check door for integrity. Check safety belts for integrity and baggage for correct posi- tioning and fastening. Check ditching emer- gency exit safety lock. Check passengers ventilation ports for proper setting.
30	Right main landing gear	Apply check procedure reported in the walk- around Station 2
31	Wheel chock	Remove if employed
32	Bottom fuselage antennas	Check for integrity
33	Right cabin ram-air inlet	Visual inspection
34	Right Pitot tube	Remove protective cap and check for any obstruction
35	Nose landing gear	Check tire status (cuts, bruises, cracks and excessive wear), slippage markers integrity, gear structure and retraction mechanism, shock absorber and gear doors attachments. There should be no sign of hydraulic fluid leakage.
36	Radome	Check for integrity
37	Radome access door	Visual inspection
38	Left Pitot tube	<i>Remove protective cap and check for any obstruction</i>
39	Left cabin ram-air inlet	Visual inspection

Avoid blowing inside Pitot-tube and inside airspeed indicator system's static ports as this may damage instruments.

3.3. COCKPIT INSPECTIONS

Instruct passengers on how to use safety belts and normal / emergency exits. Passenger embarkation should be done, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges.

Do not smoke on board

- 1 Parking Brake
- 2 AFM
- **3** Weight and balance
- 4 Flight controls
- 5 Seat
- 6 Seat belt
- 7 Passenger briefing
- 8 Doors
- 9 Landing gear control knob
- 10 Breakers
- **11** MASTER SWITCH
- 12 Fuel quantity
- 13 RH fuel selector
- 14 LH fuel selector
- 15 RH Electrical Fuel Pump
- **16** RH Electrical Fuel pump
- 17 LH Electrical Fuel Pump
- 18 LH Electrical Fuel pump
- **19** Annunciator panel
- 20 Landing gear lights
- **21** ELT
- 22 Fire detector
- 23 Electrical pitch trim selector (if installed)
- 24 Engine levers friction
- 25 Flight controls
- 26 Alternate static port
- 27 Cabin heat
- **28** Flaps
- 29 Pitch trim control
- **30** Rudder trim control

CHECK ENGAGED CHECK on board CHECK if within the limits Remove seat belt used as lock Adjust as required Fastened Completed CLOSED AND LOCKED CHECK DOWN All IN ONCHECK RIGHT LEFT ON, check fuel pressure gauge correct operation and advisory light turned ON. OFF, check pressure decreased at zero ON, check fuel pressure gauge correct operation and advisory light turned ON. OFF, check pressure decreased at zero TEST TEST CHECK set to ARM TEST TEST Adjust if required CHECK free CHECK closed **CLOSED** Operate control to FULL position.

- Verify extension. Retract flaps.
- Set to neutral position.
- Set to neutral position.
- 31 Eng.Starting Battery Voltmeter (optional) Check 12 to 14 Volt

INTENTIONALLY LEFT BLANK

3.4. **ENGINE STARTING**

NOTE

Avionics switches must be set OFF during engine starting to prevent avionic equipment damage.

1 2	Start clearance RH & LH crossbus	<i>Obtain if needed</i> <i>ON</i>
3 Ric	CHRONOMETER	START
1	RH Throttle lever	IDI F

1	RH Throttle lever	IDLE
2	RH Carburetor heat	OFF
3	RH Propeller Lever	FULL FORWARD
4	RH Choke	ON if required

Cold engine

Throttles idle (fully closed), chokes fully opened. Soon after starting, advance the throttle to let the propeller reach 800 RPM and slowly close the choke. Keep engine at 900 RPM for warm up period.

Hot engine

Park the aircraft with the nose pointing into wind in order to aid cooling. Keep chokes closed and slowly open the throttles one inch while cranking.

Flooded Engine after engine start failure

Keep chokes closed, open throttle fully and start the engine, then quickly reduce throttles to idle.

RH Electrical Fuel pump	ON, check advisory light ON and posi- tive fuel press build up
STROBES	ON
RH engine propeller zone	CHECK free
RH ignitions switches	BOTH ON
	STROBES RH engine propeller zone

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

WARNING

- 9 RH start pushbutton
- RH engine oil gauge 10
- 11 RH Throttle lever
- 12 RH Choke
- RH Field 13
- 14 **RH** Ammeter
- 15 **RH** Voltmeter
- 16 **RH** Avionics

PUSH CHECK if increasing within 10 sec. (max 7 bar in cold operation) Advance to reach 1200 RPM **OFF** ONCHECK Amps positive CHECK 12 to 14 Volt ON

Left engine starting

- 1 LH Throttle lever
- 2 LH Carburetor heat
- 3 LH Propeller Lever
- 4 LH Choke
- 5 LH Electrical Fuel pump
- 6 LH engine propeller zone
- 7 LH ignitions switches

IDLE OFF FULL FORWARD ON if required ON, check advisory light ON and positive fuel press build up CHECK free BOTH ON

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

- 8 LH start pushbutton
- 9 LH engine oil gauge
- 10 LH propeller RPM
- 11 LH Choke
- 12 LH Field
- 13 LH Ammeter
- 14 LH Voltmeter
- 15 LH Avionics

PUSH CHECK increasing within 10 sec. (max 7 bar in cold operation) 1200 RPM OFF ON CHECK Amps positive CHECK 12 to 14 Volt ON

3.5. BEFORE TAXIING

- 1 Let the engines warm up to a minimum oil temperature of 50°C at 1200 RPM
- 2 Nav and taxi lights ON Audio panel ON3 4 ON COM NAV 5 ON6 Transponder Standby 7 Passengers and crews seat belts Fastened 8 Passengers and crews headphones Set as required

3.6. TAXIING

NOTE

Ensure that the main and passengers' doors warning lights are turned off.

- 1 LH/RH Fuel Selector
- 2 LH and RH fuel pressure
- **3** Parking Brake
- 4 Flight instruments
- 5 Engine instruments
- 6 Altimeter
- 7 Brakes

As required Monitor RELEASE CHECK CHECK SET both and crosscheck max difference 150 ft TEST

3.7. PRIOR TO TAKEOFF

1 2 3 4 5	Parking Brake RH Fuel Selector LH Fuel Selector LH and RH fuel pressur LH and RH Engine para		
	• Oil temperature:	90° - 110°C	
		(or 50 - 130 °C, if MOD2006/002 is applied)	
	• CHT / CT:	50° - 135°C / 50 - 120°C	
	• Oil pressure:	2-5 bar (above 1400 RPM): 0.8 bar (below 1400 RPM)	
	• Fuel pressure:	2.2 – 5.8 psi (0.15 - 0.40 bar)	
		*2.2 – 7.26 psi (0.15 – 0.50 bar)	
	*applicable for fuel pump part no.893110 and no.893114		

- 6 LH and RH Generator lights
- 7 LH and RH Propeller Lever
- 8 LH and RH Throttle Lever
- 9 RH Ignitions switches
- **10** RH Propeller Lever

CHECK BOTH OFF FULL FORWARD 1650 RPM

Set L / R / BOTH (*RPM drop with* single ignition circuit selected must not exceed 130 prop's *RPM*; maximum *RPM difference by use of either LH or RH circuits cannot exceed 50 RPM*) *GOVERNOR CHECK*

- a) Reduce prop speed to 1200 RPM;
- *b)* move propeller lever back to full forward position;
- c) repeat a) and b) 3 times;
- *d)* verify that the governor closely and *firmly controls the RPM;*
- e) verify that 1650 prop RPM are restored with prop lever in full forward position.

NOTE

Do not cause the propeller speed drop below 1150 RPM in any case.

- **11** RH Carburettor heat
- 12 RH Carburettor heat
- **13** RH engine instruments

ON, verify propeller RPM decreasing about 100 RPM OFF CHECK parameters within green arcs

14	LH Ignitions switches	Set L / R / BOTH (RPM drop with single ignition circuit selected must not exceed 130 prop's RPM; maximum RPM difference by use of either cir- cuits LEFT or RIGHT cannot over- come 50 RPM)
15	RH Propeller Lever	 GOVERNOR CHECK f) Reduce prop speed to 1200 RPM; g) move propeller lever back to full forward position; h) repeat a) and b) 3 times; i) verify that the governor closely and firmly controls the RPM; j) verify that 1650 prop RPM are restored with prop lever in full for-

NOTE

Do not cause the propeller speed drop below 1150 RPM in any case.

ward position.

about 100 RPM

CHECK parameters

Take OFF performances)

SET neutral position

Check free

CHECK

OFF

arcs

ON, verify propeller RPM decreasing

CHECK consistent with fuel plan

T/O or as required (see Section 5,

within green

- 16 LH Carburettor heat
- 17 LH Carburettor heat
- **18** LH engine instruments
- 19 LH and RH Fuel quantity indicator20 Flaps
- 21 Pitch trim and rudder trim
- 22 Flight controls
- 23 Seat belts fastened and doors closed and locked

3.8. LINE-UP

1 Parking Brake *RELEASE*, check full in 2 Annunciator panel CHECK cautions and warnings OFF **RH Fuel Selector** 3 RIGHT LH Fuel Selector LEFT 4 5 Pitot heat as required 6 Transponder SET ALT 7 Magnetic compass CHECK 8 **CROSS CHECK** Heading indicator

4th Edition, Rev. 4

3.9. TAKEOFF AND CLIMB

- 1 Landing light
- 2 LH and RH Electrical Fuel pump
- **3** Carburettors heat
- 4 LH and RH Propeller Lever
- 5 LH and RH Throttle Lever
- **6** Engines instruments
- 7 Rotation speed
- 8 Apply brakes to stop wheel spinning
- 9 Landing gear control knob
- **10** Landing and taxi light
- 11 LH and RH Propeller Lever

ON BOTH ON CHECK OFF FULL FORWARD FULL POWER Parameters within green arcs

MTOW 1180kg	MTOW 1230 kg
Vr = 64 KIAS	Vr = 65 KIAS

UP: check green lights and TRANS light turned OFF within about 20" OFF above 10000 ft Set max cont power at safe altitude

Max take off power must be limited to 5 minutes. Reduce Throttles MAP power before retracting Propeller to 2200 RPM or below.

12 LH and RH Electrical Fuel pump BOTH OFF

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary). It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

Noteworthily best climb gradient speed (V_X) flaps UP is lower than best climb speed (V_X) flaps T/O up to 6000 ft (density altitude). Refer to Section 5, "Best climb gradient speed" table.

3.10. CRUISE

- LH and RH Propeller Lever

SET to 1900-2250 RPM

1

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set before engine Throttle Levers are advanced.

- 2 Engine parameters check (LH and RH)
 - Oil temperature: 90° 110 ° C (or 50° - 130° C, if MOD2006/002 is applied)
 CHT / CT: 50° - 135° / 50° - 120 °C
 Oil pressure: 2 - 5 bar.
 - Fuel pressure: 2.2 5.8 psi

*2.2 – 7.26 psi (0.15 – 0.50 bar)

*applicable for fuel pump part no.893110 and no.893114

3 Carburettor heat as needed *(see also instructions addressed on Section 3*

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

Fuel balance and crossfeed

check as necessary

4

To evaporate possibly accumulated condensation water, once per flight day (for approximately 5 minutes) 100° C (212° F) oil temperature must be reached.

3.11. TURBULENT AIR OPERATION

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed buildups, which may occur as a result of the turbulence or of distractions caused by the conditions.

3.12. DESCENT AND APPROACH

- 1 Propellers
- 2 Carburettors heat
- 3 Altimeter setting

Set to Max Continuous - 2250 RPM As required QNH set and crosscheck

3.13. BEFORE LANDING

- 1 Rear passengers seats
- 2 LH and RH Electrical Fuel pump
- **3** On downwind leg:

MTOW 1180kg	MTOW 1230 kg	Fla
$V_{FE} = 119KIAS$	V _{FE} =122KIAS	

- 4 Speed below applicable VLO/VLE
- 5 Carburettors heat
- 6 LH and RH Propeller Lever
- 7 On final leg: speed below 93 KIAS
- 8 Final Approach Speed
- 9 Landing and taxi light
- 10 Touchdown speed

Seats set at full aft and lower position BOTH ON

Flaps T/O

Landing gear control knob - DOWN – Check green lights ON CHECK OFF FULL FORWARD Flaps FULL

MTOW 1180kg	MTOW 1230 kg
$V_{APP} = 70KIAS$	$V_{APP} = 71KIAS$
ON	

65 KIAS

3.14. BALKED LANDING/MISSED APPROACH

1	LH and RH Propeller Lever	FULL FORWARD
2	LH and RH Throttle Lever	FULL POWER

Propeller Lever increase to max RPM should be attained before engine Throttle Levers are advanced to max take off power. Max take off power must be limited to 5 minutes.

3	Flaps	T/O
4	Speed	Keep over 62 KIAS, climb to V _Y or V _X
5 6	Landing gear Flaps	as applicable UP as positive climb is achieved UP

NOTE

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary). It has been demonstrated that best climb rate is always obtained with

flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

Noteworthily best climb gradient speed (V_X)flaps UP is lower than best climb speed (V_X)flaps T/O up to 6000 ft (density altitude).Refer to Section 5, "Best climb gradient speed" table.

3.15. AFTER LANDING

- 1 LH and RH Electrical Fuel pump
- 2 Flaps
- 3 Landing light

BOTH OFF 0° OFF

P2006T - Aircraft Flight Manual Page 4 - 25

3.16. **PARKING/SHUT DOWN**

NOTE

It is always suggested to park the aircraft with the nose pointing into wind to improve cooling after shut down.

1	Parking brake	Engage
2	Taxi light	OFF
3	Engines	Allow for cooling down 1 minute at
		idle power
4	LH and RH AVIONIC BUS	OFF
5	LH and RH CROSS BUS	OFF
6	Flaps	Check in UP
7	Trims	Check neutrals
8	Navigation lights	OFF

Navigation lights

Ensure the engine is at its lowest possible idle speed before selecting ignitions off.

9	Ignitions	Turn OFF one at time
10	Doors safety locks	Check OFF
11	LH/RH Field	OFF
12	All external lights	OFF
13	Master Switch	OFF
14	Emg Batt / Emg cockpit light / Emg	Check OFF
	ADI switches	

NOTE

Before disembarkation verify propellers are fully stopped.

Instruct passengers to fully open pax door (against nacelle stop) and depart alongside aircraft fuselage, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges.

Crew should avoid propeller disc area crossing while proceeding alongside a fully opened pilot's door (up to 110°).

3.17. POSTFLIGHT CHECKS

- 1 Protective cover for Pitot tubes, stall warning and stat- *Install* ic port plugs.
- 2 Lock one control wheel with safety belt.
- 3 Wheel chocks
- 4 Aileron lock
- 5 Pilot and passengers doors.

Place under MLG Place and tighten Close and latch

4. GROUND TOWING, PARKING AND MOORING

4.1 Towing

When the a/c is moved on the ground, the Master Switch must be turned ON until the a/c is parked.

To tow the aircraft it is necessary to use a metal stiff bar connected to the nose gear.

Do not turn nose wheel above 20° either side of center: greater steering angles can damage the wheel stop. The tow bar must be removed before engines starting.

4.2 PARKING

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake and install control locks
- 3. Secure pilot control wheel by wrapping the seat belt around it.

Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para. 4.3.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

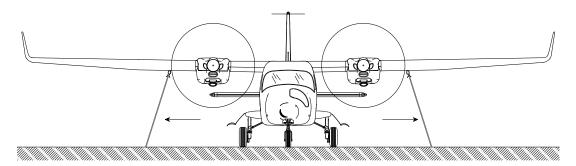
4.3 MOORING

The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

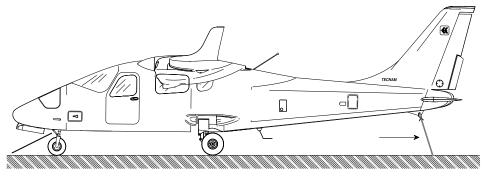
Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind.
- 2. Center nose wheel, engage parking brake and/or use the wheel chocks.



Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.


- 3. Secure pilot control wheel by wrapping the seat belt around it
- 4. Assure flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks and protective plugs.
- 7. Close and lock cabin doors.
- 8. Secure tie-down cables to the nose gear leg (in correspondence of the wheel fork) and to the wings and tail cone tie-down rings at approximately 45 degree with respect to the ground. (Refer to following figures)

NOTE:

Additional preparation for high winds includes tie-down ropes from the main landing gear forks employment.

Mooring – front view

Mooring - side view

INTENTIONALLY LEFT BLANK

Section 4 – Normal procedures GROUND TOWING, PARKING AND MOORING

INTENTIONALLY LEFT BLANK

Section 4 – Normal procedures GROUND TOWING, PARKING AND MOORING

COSTRUZION AERONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 1

SECTION 5 - PERFORMANCES

INDEX

Introduction	2
Use of performances charts	2
Airspeed indicator system calibration	
ICAO Standard Atmosphere	4
Examples:	4
Stall speed	5
Crosswind	6
Take-off performances	7
Take-off Rate of Climb	10
Take-off Rate of Climb at V _x	11
Enroute Rate of Climb	12
Enroute Rate of Climb at V_x	13
One-Engine Rate of Climb	14
One-Engine Rate of Climb at V _{xse}	15
Cruise performances	16
Landing performances	19
Balked landing climb gradient	
Noise data	
	Use of performances charts

1. INTRODUCTION

This section provides all necessary data for an accurate and comprehensive planning of flight activity from takeoff to landing.

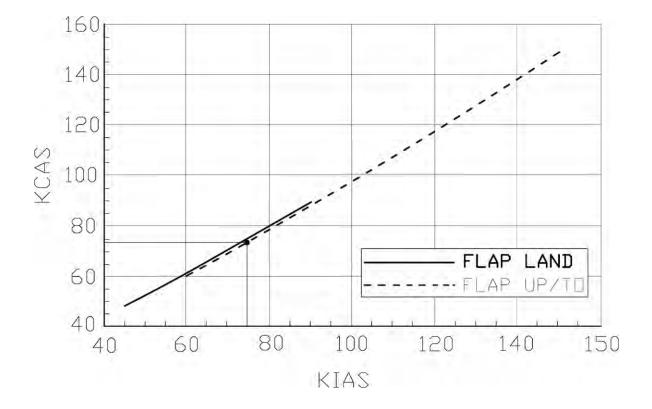
Data reported in graphs and/or in tables were determined using:

- "Flight Test Data" under conditions prescribed by EASA CS-23 regulation
- aircraft and engine in good condition
- average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - s.l.); evaluations of the impact on performances were carried out by theoretical means for:

*airspeed

- * external temperature
- *altitude
- *weight
- *runway type and condition


2. Use of performances charts

Performances data are presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan the mission with required precision and safety.

Additional information is provided for each table or graph.

3. AIRSPEED INDICATOR SYSTEM CALIBRATION

Graph shows calibrated airspeed V_{CAS} as a function of indicated airspeed V_{IAS}.

Example:

<u>Given</u> KIAS 75 <u>Find</u> KCAS 74

4. ICAO STANDARD ATMOSPHERE

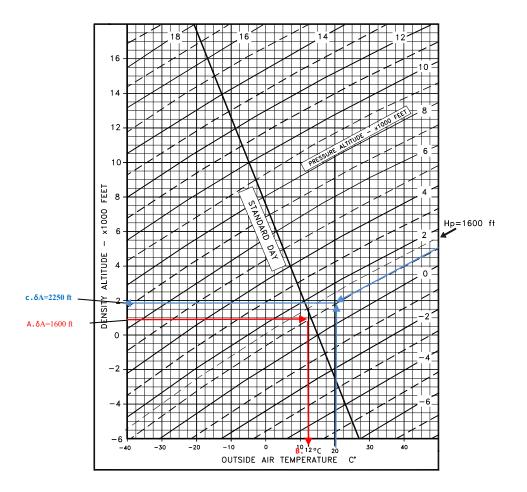
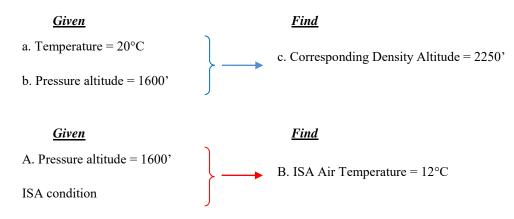



Figure 2 – ICAO chart

5. EXAMPLES:


```
4<sup>th</sup> Edition, Rev. 0
```

Section 5 - Performances ICAO STANDARD ATMOSPHERE

COSTRUZIONI AFRONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 5

6. STALL SPEED

Weight: 1180 kg Throttle Levers: IDLE Landing Gear: Down CG: Most Forward (16.5%) No ground effect

WEIGHT	ΒΑΝΚ	STALL SPEED							
	ANGLE	FLAF	es O°	FLAPS	т/о	FLAPS FULL			
[kg]	[deg]	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS		
	0	66	64	56	56	53	54		
	15	67	65	57	57	54	55		
1230 (FWD C.G.)	30	70	69	60	60	58	58		
(FVVD C.G.)	45	77	76	67	67	64	64		
	60	93	90	81	79	78	76		

Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 200 ft with banking below 30°.

7. CROSSWIND

Maximum demonstrated crosswind is 17 Kts

 \Rightarrow *Example*:

<u>Given</u>

<u>Find</u>

Wind direction (with respect to aircraft longitudinal axis) = 30°

Wind speed = 20 Kts

Headwind = 17.5 Kts

Crosswind = 10 Kts

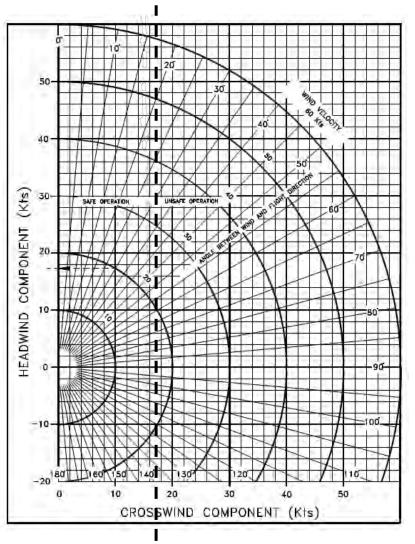


Figure 3 – Crosswind diagram

Section 5 - Performances CROSSWIND

COSTRUZIONARE P2006T - Aircraft Flight Manual Page 5 - 7

8. TAKE-OFF PERFORMANCES

<u>Weight = 1180 kg</u>

Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS Throttle Levers: Full Forward Runway: Grass

Corrections

Headwind: - 2.5m for each kt (8 ft/kt)
Tailwind: + 10m for each kt (33ft/kt)
Paved Runway: - 6% to Ground Roll
Runway slope: + 5% to Ground Roll for each +1%

Runway: Grass									
Pressure				Distance [m]				
Altitude			Tempera	ture [°C]		ISA			
[ft]		-25	0	25	50	154			
S.L.	Ground Roll	208	258	313	374	290			
J.L.	At 50 ft AGL	266	331	404	485	373			
1000	Ground Roll	230	284	346	413	315			
1000	At 50 ft AGL	294	366	447	537	407			
2000	Ground Roll	254	315	382	457	343			
2000	At 50 ft AGL	326	406	495	595	444			
3000	Ground Roll	281	348	423	505	374			
3000	At 50 ft AGL	401	499	610	733	529			
4000	Ground Roll	311	385	468	560	408			
4000	At 50 ft AGL	401	499	610	733	529			
5000	Ground Roll	345	427	519	620	445			
5000	At 50 ft AGL	445	555	677	814	579			
6000	Ground Roll	383	474	575	688	486			
6000	At 50 ft AGL	495	617	753	906	633			
7000	Ground Roll	425	526	639	764	531			
7000	At 50 ft AGL	551	686	839	1008	693			
8000	Ground Roll	472	585	710	849	581			
0000	At 50 ft AGL	614	765	934	1123	759			
9000	Ground Roll	525	650	790	945	635			
9000	At 50 ft AGL	685	853	1042	1253	833			
10000	Ground Roll	585	724	879	1052	696			
10000	At 50 ft AGL	764	952	1163	1399	914			

4th Edition, Rev. 0

Section 5 - Performances

TAKE-OFF PERFORMANCES

COSTRUZIONI AFRONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 8

Weight = 1080 kg

Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS Throttle Levers: Full Forward Bunway: Grass

Corrections

Headwind: - 2.5m for each kt (8 ft/kt)
Tailwind: + 10m for each kt (33ft/kt)
Paved Runway: - 6% to Ground Roll
Runway slope: + 5% to Ground Roll for each +1%

Runway: Grass	Distance [m]									
Pressure Altitude				ture [°C]						
[ft]		-25		25	50	ISA				
	Ground Roll	148	188	234	286	215				
S.L.	At 50 ft AGL	193	246	306	374	281				
1000	Ground Roll	165	210	261	319	235				
1000	At 50 ft AGL	216	274	341	418	308				
2000	Ground Roll	184	234	291	356	258				
2000	At 50 ft AGL	241	306	381	466	338				
2000	Ground Roll	206	262	326	398	284				
3000	At 50 ft AGL	301	383	477	583	409				
4000	Ground Roll	230	293	364	446	312				
	At 50 ft AGL	301	383	477	583	409				
5000	Ground Roll	258	328	408	499	343				
5000	At 50 ft AGL	338	429	534	653	449				
6000	Ground Roll	289	368	457	559	378				
6000	At 50 ft AGL	378	481	599	732	495				
7000	Ground Roll	324	412	513	628	417				
7000	At 50 ft AGL	425	540	672	822	545				
8000	Ground Roll	364	463	577	705	460				
8000	At 50 ft AGL	477	606	755	923	602				
9000	Ground Roll	410	521	648	793	508				
5000	At 50 ft AGL	536	682	849	1038	664				
10000	Ground Roll	461	586	730	893	561				
10000	At 50 ft AGL	604	767	955	1168	734				

4th Edition, Rev. 0

Section 5 - Performances TAKE-OFF PERFORMANCES

COSTRUZION ARRIVAUTICHE P2006T - Aircraft Flight Manual Page 5 - 9

<u>Weight = 930 kq</u>

Corrections

Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS Throttle Levers: Full Forward Runway: Grass Headwind: - 2.5m for each kt (8 ft/kt)
Tailwind: + 10m for each kt (33ft/kt)
Paved Runway: - 6% to Ground Roll
Runway slope: + 5% to Ground Roll for each +1%

Pressure				Distance [m]]	
Altitude			Tempera	ture [°C]		ISA
[ft]		-25	0	25	50	IJA
S.L.	Ground Roll	100	127	158	194	146
J.L.	At 50 ft AGL	131	167	207	254	190
1000	Ground Roll	112	142	177	216	160
1000	At 50 ft AGL	146	186	231	283	209
2000	Ground Roll	125	159	197	242	175
2000	At 50 ft AGL	163	208	258	316	229
3000	Ground Roll	140	177	221	270	192
5000	At 50 ft AGL	204	260	323	395	277
4000	Ground Roll	156	198	247	302	212
4000	At 50 ft AGL	204	260	323	395	277
5000	Ground Roll	175	222	277	338	233
5000	At 50 ft AGL	229	291	362	443	305
6000	Ground Roll	196	249	310	379	256
8000	At 50 ft AGL	257	326	406	496	335
7000	Ground Roll	220	280	348	426	282
7000	At 50 ft AGL	288	366	455	557	370
8000	Ground Roll	247	314	391	478	312
8000	At 50 ft AGL	323	411	512	626	408
9000	Ground Roll	278	353	440	538	344
9000	At 50 ft AGL	364	462	575	704	450
10000	Ground Roll	313	397	495	605	380
10000	At 50 ft AGL	409	520	648	792	498

COSTRUZIONIALTICHE P2006T - Aircraft Flight Manual Page 5 - 10

9. TAKE-OFF RATE OF CLIMB

Power Settin Flaps: Take-C Landing Gea		ntinuous Po	wer					
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]					
0	Altitude	· Vy		Tempera	ture [°C]		ISA	
[kg]	[ft]	[KIAS]	-25	50				
	S.L.	85	1347	1154	982	826	1048	
	2000	82	1200	1010	841	688	933	
	4000	79	1054	867	701	551	818	
1100	6000	76	908	725	561	413	704	
1180	8000	73	763	583	422	277	589	
	10000	70	618	441	283	141	474	
	12000	67	473	300	145	5	359	
	14000	64	330	159	7	-130	244	
	S.L.	85	1507	1302	1119	954	1190	
	2000	82	1351	1150	970	808	1068	
	4000	79	1196	998	822	662	946	
1080	6000	76	1041	847	674	517	825	
1000	8000	73	887	696	526	372	703	
	10000	69	734	546	379	228	581	
	12000	66	581	397	232	84	459	
	14000	63	428	248	86	-59	338	
	S.L.	85	1803	1575	1372	1189	1451	
	2000	82	1630	1406	1206	1026	1315	
	4000	79	1457	1238	1041	864	1180	
930	6000	75	1286	1070	877	703	1045	
530	8000	72	1114	902	713	542	909	
	10000	69	944	735	549	382	774	
	12000	65	774	569	387	222	639	
	14000	62	604	404	224	63	503	

10. Take-off Rate of Climb at $V_{\rm x}$

Power Settin Flaps: Take-C Landing Gear		ntinuous Po	wer					
Weight	Pressure	Climb Speed	Rate of Climb at V _x [ft/min]					
C C	Altitude	Vx		Tempera	ture [°C]		ISA	
[kg]	[ft]	[KIAS]	-25	0	25	50	154	
	S.L.	78	1283	1102	940	794	1002	
	1000	76	1214	1034	874	729	949	
	2000	75	1145	967	808	664	895	
1100	3000	74	1076	900	742	600	841	
1180	4000	73	1008	833	676	535	787	
	5000	72	939	766	611	471	733	
	6000	71	871	699	545	407	679	
	7000	70	803	632	480	342	625	
	S.L.	78	1283	1102	940	794	1002	
	1000	76	1214	1034	874	729	949	
	2000	75	1145	967	808	664	895	
1080	3000	74	1076	900	742	600	841	
1000	4000	73	1008	833	676	535	787	
	5000	72	939	766	611	471	733	
	6000	71	871	699	545	407	679	
	7000	70	803	632	480	342	625	
	S.L.	78	1435	1243	1072	918	1138	
	1000	76	1362	1172	1002	849	1081	
	2000	75	1289	1101	932	780	1024	
020	3000	74	1216	1030	863	712	967	
930	4000	73	1144	958	793	644	910	
	5000	72	1071	888	724	576	853	
	6000	71	999	817	654	508	796	
	7000	69	927	746	585	440	739	

EXTECNAM P2006T - Aircraft Flight Manual Page 5 - 12

11. ENROUTE RATE OF CLIMB

Power Settin Flaps: Up Landing Gea	ıg: Maximum Co r: Up	ntinuous Po	wer					
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]					
5	Altitude	· Vy		Tempera	ture [°C]		ISA	
[kg]	[ft]	[KIAS]	-25	0	25	50		
	S.L.	84	1392	1205	1038	887	1102	
	2000	83	1249	1066	901	753	991	
	4000	81	1108	927	766	620	880	
1180	6000	79	966	789	630	487	768	
1190	8000	77	826	651	495	355	657	
	10000	75	685	514	361	223	546	
	12000	73	545	377	227	92	434	
	14000	71	406	241	93	-39	323	
	S.L.	83	1560	1360	1182	1022	1251	
	2000	82	1408	1212	1037	879	1132	
	4000	80	1257	1064	892	737	1014	
1080	6000	78	1106	917	748	595	895	
1000	8000	76	956	770	604	454	776	
	10000	74	807	624	461	314	658	
	12000	72	657	478	318	173	539	
	14000	70	509	333	175	34	420	
	S.L.	82	1873	1649	1449	1269	1527	
	2000	81	1703	1483	1286	1109	1393	
	4000	79	1533	1317	1124	950	1260	
930	6000	77	1364	1151	962	791	1127	
330	8000	75	1196	987	800	632	994	
	10000	73	1028	823	639	474	861	
	12000	71	860	659	479	317	727	
	14000	69	693	496	319	160	594	

12. ENROUTE RATE OF CLIMB AT V_x

Power Settin Flaps: Up Landing Gea	ıg: Maximum Co r: Up	ntinuous Po	wer					
Weight	Pressure	Climb Speed	Rate of Climb at V _x [ft/min]					
J. J	Altitude	· V _x		Tempera	ture [°C]		ISA	
[kg]	[ft]	[KIAS]	-25	0	25	50		
	S.L.	72	1315	1142	987	848	1047	
	1000	72	1249	1077	924	786	996	
	2000	72	1183	1013	861	724	944	
1180	3000	72	1118	949	799	663	893	
1100	4000	72	1052	885	736	601	841	
	5000	71	987	821	673	540	790	
	6000	71	922	757	611	479	738	
	7000	71	856	694	548	417	687	
	S.L.	72	1480	1295	1130	981	1194	
	1000	72	1410	1226	1062	915	1139	
	2000	72	1340	1158	995	848	1084	
1080	3000	72	1269	1089	928	782	1029	
1080	4000	71	1199	1020	861	717	973	
	5000	71	1129	952	794	651	918	
	6000	71	1059	884	727	585	863	
	7000	71	990	815	660	520	808	
	S.L.	72	1787	1578	1391	1223	1463	
	1000	72	1707	1500	1315	1148	1401	
	2000	71	1628	1422	1239	1074	1339	
020	3000	71	1549	1345	1163	999	1277	
930	4000	71	1470	1268	1087	925	1215	
	5000	71	1391	1190	1012	851	1153	
	6000	71	1312	1113	936	777	1090	
	7000	70	1233	1036	861	703	1028	

13. ONE-ENGINE RATE OF CLIMB

Power Setting: Maximum Continuous Power (operative engine), propeller feathered (inoperative engine) Flaps: Up Landing Gear: Up									
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]						
	Altitude	V _{ySE}		Tempera	ture [°C]		ISA		
[kg]	[ft]	[KIAS]	-25	5 0 25 50					
	S.L.	80	362	261	171	89	206		
	1000	80	324	224	134	53	176		
	2000	80	285	186	97	17	146		
1100	3000	79	247	148	60	-19	116		
1180	4000	79	209	111	24	-55	85		
	5000	79	171	74	-13	-91	55		
	6000	79	132	36	-49	-127	25		
	7000	78	94	-1	-86	-163	-5		
	S.L.	80	436	330	235	149	271		
	1000	80	396	290	196	111	240		
	2000	79	355	251	157	73	208		
1000	3000	79	315	211	118	35	176		
1080	4000	79	275	172	80	-3	145		
	5000	79	234	132	41	-41	113		
	6000	78	194	93	3	-78	81		
	7000	78	154	54	-35	-116	50		
	S.L.	79	574	455	349	253	390		
	1000	79	529	411	305	211	355		
	2000	79	483	367	262	168	319		
020	3000	78	438	322	219	126	284		
930	4000	78	393	278	176	83	248		
	5000	78	348	235	133	41	213		
	6000	78	304	191	90	-1	178		
	7000	77	259	147	47	-43	142		

4th Edition, Rev. 0

Section 5 - Performances ONE-ENGINE RATE OF CLIMB

COSTRUZIONI AFRONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 15

14. One-Engine Rate of Climb at V_{xSE}

Power Setting: Maximum Continuous Power (operative engine), propeller feathered (inoperative engine) Flaps: Up Landing Gear: Up									
Weight	Pressure Altitude	Climb Speed	Rate of Climb at V _{xSE} [ft/min]						
weight		V _{xSE}		Tempera	ture [°C]		ISA		
[kg]	[ft]	[KIAS]	-25	0	25	50			
	S.L.	79	356	257	168	88	203		
	1000	79	319	220	132	53	173		
	2000	79	281	183	96	17	144		
1100	3000	79	243	146	60	-18	114		
1180	4000	78	206	110	24	-53	84		
	5000	78	168	73	-12	-89	55		
	6000	78	131	36	-48	-124	25		
	7000	78	93	0	-84	-159	-4		
	S.L.	79	424	321	229	147	265		
	1000	79	385	283	192	110	234		
	2000	79	346	245	155	73	204		
1000	3000	79	307	207	117	37	173		
1080	4000	79	268	169	80	0	143		
	5000	78	229	131	43	-36	112		
	6000	78	190	93	6	-73	81		
	7000	78	152	55	-31	-109	51		
	S.L.	78	556	442	341	249	380		
	1000	78	513	400	299	209	346		
	2000	78	469	358	258	168	312		
020	3000	78	426	316	217	128	279		
930	4000	78	383	274	176	87	245		
	5000	78	340	232	134	47	211		
	6000	77	298	190	93	7	177		
	7000	77	255	148	52	-34	143		

15. CRUISE PERFORMANCES

Pressur	Pressure Altitude: 0 ft												
		ISA -	- 30°C (-1	.5°C)	I	ISA (15°C)			+ 30°C (4	5°C)			
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]			
2250	29.5	103%	143	28.6	97%	145	27.1	92%	146	25.8			
2250	28	88%	134	24.5	83%	136	23.2	79%	138	22			
2250	26	69%	122	19.2	65%	124	18.2	62%	125	17.3			
2250	24	59%	115	16.6	56%	116	15.7	53%	117	14.9			
2250	22	46%	103	12.8	43%	103	12.1	41%	103	11.5			
2250	20	39%	96	11	37%	95	10.4	35%	94	9.9			
2100	28	84%	132	23.5	80%	134	22.2	76%	135	21.1			
2100	26	66%	121	18.5	63%	122	17.5	60%	123	16.7			
2100	24	57%	114	16	54%	114	15.1	52%	115	14.4			
2100	22	43%	100	12.1	41%	100	11.5	39%	100	10.9			
2100	20	37%	92	10.2	35%	91	9.7	33%	89	9.2			
1900	26	61%	117	17.1	58%	118	16.2	55%	119	15.4			
1900	24	53%	110	14.9	50%	111	14.1	48%	111	13.4			
1900	22	41%	97	11.4	39%	97	10.8	37%	96	10.2			
1900	20	35%	89	9.6	33%	88	9.1	31%	85	8.7			
	ller RPM Consumpt	tion for e	each Engl	ine									

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 17

Weight	: 1150 kg	5								
Pressur	e Altitud	le: 3000	ft							
		ISA -	- 30°C (-2	21°C)		ISA (9°C)	_	ISA	+ 30°C (3	9°C)
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	TCAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]
2388	26.4	92%	141	25.7	87%	143	24.3	83%	144	23.1
2250	26.4	89%	139	25	85%	141	23.6	80%	143	22.4
2250	26	85%	137	23.9	81%	138	22.6	77%	140	21.5
2250	24	72%	128	20	68%	129	18.9	64%	130	18
2250	22	57%	116	16	54%	117	15.1	51%	118	14.3
2250	20	48%	108	13.4	45%	108	12.7	43%	108	12.1
2100	26.4	85%	137	23.9	81%	138	22.6	77%	140	21.4
2100	26	82%	134	22.8	77%	136	21.6	73%	137	20.5
2100	24	69%	125	19.2	65%	127	18.1	62%	128	17.2
2100	22	54%	114	15.2	51%	114	14.3	49%	115	13.6
2100	20	45%	104	12.6	43%	104	11.9	41%	104	11.3
1900	26.4	78%	132	21.9	74%	134	20.7	70%	135	19.6
1900	26	75%	130	20.9	71%	131	19.8	67%	132	18.8
1900	24	63%	121	17.7	60%	122	16.7	57%	123	15.9
1900	22	50%	110	14.1	48%	110	13.3	45%	110	12.6
1900	20	42%	101	11.7	40%	101	11.1	38%	100	10.6
* Propell	ler RPM				-					

** Fuel Consumption for each Engine

Weight	Weight: 1150 kg									
Pressur	Pressure Altitude: 6000 ft									
	ISA – 30°C (-27°C) ISA (3°C) ISA + 30°C (33°C							3°C)		
RPM *	MAP	PWR	ктаѕ	F.C.**	PWR	KTAS	F.C.**	PWR	ктаѕ	F.C.**
	[inHg]	FVVI	RIAJ	[lt/hr]	FVVI	KIAJ	[lt/hr]	FVVI	RIAJ	[lt/hr]
2388	23.6	83%	139	23.3	79%	141	22	75%	142	20.9
2250	23.6	81%	138	22.6	76%	139	21.4	73%	141	20.3
2250	22	68%	129	19.1	65%	130	18.1	61%	131	17.2
2250	20	57%	119	15.8	54%	120	14.9	51%	120	14.2
2250	18	46%	108	12.9	44%	108	12.2	41%	107	11.6
2100	23.6	77%	135	21.6	73%	137	20.4	69%	138	19.4
2100	22	65%	126	18.2	62%	127	17.2	59%	128	16.4
2100	20	54%	116	15	51%	116	14.1	48%	117	13.4
2100	18	44%	106	12.4	42%	106	11.7	40%	105	11.1
1900	23.6	71%	130	19.8	67%	132	18.7	64%	133	17.8
1900	22	60%	122	16.8	57%	123	15.8	54%	123	15
1900	20	50%	112	13.9	47%	112	13.1	44%	112	12.4
1900	18	41%	102	11.6	39%	102	10.9	37%	100	10.4
* Propell	er RPM									
** Fuel Co	onsumptio	n for eac	h Engine							

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 18

Weight	Weight: 1150 kg										
Pressure Altitude: 9000 ft											
		ISA -	– 30°C (-3	3°C)		ISA (-3°C)			ISA + 30°C (27°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2388	21.1	75%	137	20.9	71%	139	19.7	67%	140	18.7	
2250	21.1	73%	136	20.3	69%	137	19.2	65%	138	18.2	
2250	20	65%	130	18.3	62%	131	17.2	58%	131	16.3	
2250	18	53%	118	14.9	50%	119	14	48%	118	13.3	
2100	21.1	69%	133	19.4	65%	134	18.3	62%	135	17.4	
2100	20	62%	127	17.4	59%	128	16.4	56%	128	15.6	
2100	18	51%	116	14.2	48%	116	13.4	46%	116	12.7	
1900	21.1	64%	128	17.8	60%	129	16.8	57%	130	15.9	
1900	20	57%	122	16	54%	123	15.1	51%	123	14.3	
1900	18	47%	112	13.2	44%	112	12.4	42%	111	11.8	
* Propel	ler RPM	-	-	-	-	-	-	-	-	-	

** Fuel Consumption for each Engine

Weight: 1150 kg										
Pressure Altitude: 12000 ft										
		ISA -	- 30°C (-3	89°C)		ISA (-9°C)		ISA + 30°C (21°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]
2388	18.8	67%	135	18.8	63%	136	17.7	60%	136	16.7
2250	18.8	65%	133	18.2	61%	134	17.2	58%	134	16.3
2250	18	60%	129	16.8	57%	129	15.9	54%	129	15
2100	18.8	62%	130	17.4	59%	131	16.4	56%	132	15.5
2100	18	58%	126	16.1	54%	126	15.2	51%	126	14.4
1900	18.8	57%	125	15.9	54%	126	15	51%	126	14.2
1900	18	53%	121	14.8	50%	121	13.9	47%	121	13.2
	* Propeller RPM ** Fuel Consumption for each Engine									

16. LANDING PERFORMANCES

Weight = 1180 kg

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (*16 ft/kt*) Tailwind: + 11m for each kt (*36ft/kt*) Paved Runway: - 2% to Ground Roll Runway slope: - 2.5% to Ground Roll for each +1%

Pressure			[Distance [m	n]	
Altitude			Tempera	ture [°C]		ISA
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	183	202	220	238	213
3.L.	At 50 ft AGL	288	312	335	358	326
1000	Ground Roll	190	209	228	247	219
	At 50 ft AGL	297	321	345	369	334
2000	Ground Roll	197	217	237	256	226
	At 50 ft AGL	306	331	356	381	342
3000	Ground Roll	204	225	245	266	232
	At 50 ft AGL	325	352	379	405	360
4000	Ground Roll	212	233	255	276	239
4000	At 50 ft AGL	325	352	379	405	360
5000	Ground Roll	220	242	264	287	247
5000	At 50 ft AGL	335	363	391	418	369
6000	Ground Roll	228	251	275	298	254
0000	At 50 ft AGL	346	375	403	431	378
7000	Ground Roll	237	261	285	309	262
7000	At 50 ft AGL	357	387	416	445	388
8000	Ground Roll	246	271	296	321	270
8000	At 50 ft AGL	368	399	430	460	398
9000	Ground Roll	256	282	308	334	279
5000	At 50 ft AGL	380	412	444	475	409
10000	Ground Roll	266	293	320	347	288
10000	At 50 ft AGL	393	426	459	491	420

EXTECNAM P2006T - Aircraft Flight Manual Page 5 - 20

<u>Weight = 1080 kg</u>

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt)

Tailwind: + 11m for each kt (36ft/kt)

Paved Runway: - 2% to Ground Roll **Runway slope:** - 2.5% to Ground Roll for each +1%

Pressure			[Distance [m	n]	
Altitude			ISA			
[ft]		-25	0	25	50	IJA
S.L.	Ground Roll	175	192	210	227	203
3.L.	At 50 ft AGL	271	293	315	337	306
1000	Ground Roll	181	199	218	236	209
	At 50 ft AGL	279	302	325	348	314
2000	Ground Roll	188	207	226	245	215
2000	At 50 ft AGL	288	311	335	358	322
3000	Ground Roll	195	215	234	254	222
	At 50 ft AGL	306	331	356	381	338
4000	Ground Roll	202	223	243	263	228
4000	At 50 ft AGL	306	331	356	381	338
5000	Ground Roll	210	231	252	273	235
5000	At 50 ft AGL	315	342	368	394	347
6000	Ground Roll	218	240	262	284	243
0000	At 50 ft AGL	325	353	380	406	356
7000	Ground Roll	226	249	272	295	250
7000	At 50 ft AGL	336	364	392	420	365
8000	Ground Roll	235	259	283	306	258
0000	At 50 ft AGL	347	376	405	434	375
9000	Ground Roll	244	269	294	318	266
5000	At 50 ft AGL	358	388	418	448	385
10000	Ground Roll	254	280	305	331	275
TOOOO	At 50 ft AGL	370	401	432	463	395

Section 5 - Performances LANDING PERFORMANCES

COSTRUZION AERONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 21

Weight = 930 kg

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (*16 ft/kt*) Tailwind: + 11m for each kt (*36ft/kt*) Paved Runway: - 2% to Ground Roll Runway slope: - 2.5% to Ground Roll for each +1%

Pressure		Distance [m]					
Altitude			Temperature [°C]				
[ft]		-25	0	25	50	ISA	
S.L.	Ground Roll	150	166	181	196	175	
3.L.	At 50 ft AGL	233	252	271	290	264	
1000	Ground Roll	156	172	187	203	180	
1000	At 50 ft AGL	240	260	280	299	270	
2000	Ground Roll	162	178	194	211	185	
2000	At 50 ft AGL	248	268	288	309	277	
3000	Ground Roll	168	185	202	219	191	
	At 50 ft AGL	263	285	307	328	291	
4000	Ground Roll	174	192	209	227	197	
4000	At 50 ft AGL	263	285	307	328	291	
5000	Ground Roll	181	199	217	235	203	
5000	At 50 ft AGL	272	294	317	339	299	
6000	Ground Roll	188	207	226	244	209	
6000	At 50 ft AGL	280	304	327	350	307	
7000	Ground Roll	195	215	234	254	215	
7000	At 50 ft AGL	289	313	338	361	315	
8000	Ground Roll	203	223	243	264	222	
8000	At 50 ft AGL	299	324	349	373	323	
0000	Ground Roll	210	232	253	274	229	
9000	At 50 ft AGL	308	334	360	386	331	
10000	Ground Roll	219	241	263	285	237	
10000	At 50 ft AGL	319	346	372	399	340	

17. BALKED LANDING CLIMB GRADIENT

Flight conditions (ISA and SL):

Weight:	1180 kg
Throttle levers	Both FULL FORWARD
Flaps	Τ/Ο
Landing gear	DOWN
Weight	MTOW (1180 kg)
Speed	66 KIAS
Climb gradient	10.8% (6.2°)

18. NOISE DATA

Noise level, determined in accordance with ICAO/Annex 16 4th Ed., July 2005, Vol. I°, Chapter 10, is **67.07** dB(A).

COSTRUCTORIA P2006T - Aircraft Flight Manual Page 6 - 1

SECTION 6 – WEIGHT and BALANCE

INDEX

1. II	NTRODUCTION	3
2. W	/EIGHING PROCEDURES	4
2.1	. Preparation	4
2.2	. Levelling	4
2.3	. Weighing	4
2.4	. Determination of C.G. location	4
2.5	. Weighing record	5
2.6	. Weighing record (II)	5
3. W	/EIGHTS AND C.G	7
4. B	AGGAGE LOADING	8
5. E	QUIPMENT LIST1	0

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

This section describes the procedure for establishing the basic empty weight and the moment of the aircraft. Loading procedure information is also provided.

Aircraft must be operated in accordance with the limits concerning the maximum takeoff weight and CG excursion as reported in Flight Manual Section 2.

Pilot is responsible for checking the weight and CG excursion are compliant with the related limits. CG excursion and weight limits are reported in Section 2 - Limitations.

2. WEIGHING PROCEDURES

2.1. **PREPARATION**

- Carry out weighing procedure inside closed hangar
- Remove from cabin any object unintentionally left
- Make sure Flight Manual and mandatory documents are on board
- Align nose wheel
- Drain fuel via the specific drain valve
- Oil, hydraulic fluid and coolant liquid at the operating levels
- Move sliding seats to most forward position
- Raise flaps to fully retracted position
- Place control surfaces in neutral position
- Place scales (min. capacity 300 kg) under each wheel

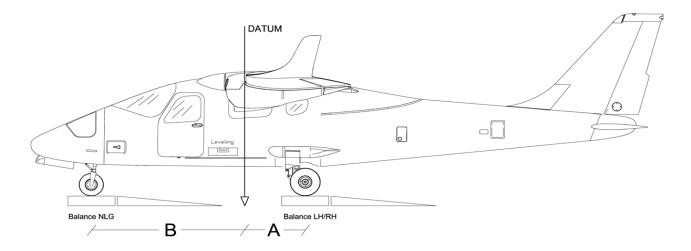
2.2. LEVELLING

- Level the aircraft (the reference for longitudinal levelling is made putting a spirit-level on the cabin floor as shown in the Aircraft Maintenance Manual).
- Adjust longitudinal attitude deflating nose tire

2.3. WEIGHING

- Record weight shown on each scale
- Repeat weighing procedure three times
- Calculate empty weight

2.4. DETERMINATION OF C.G. LOCATION


- Drop a plumb bob tangent to the wing leading edge and trace a reference mark on the floor (see Figure on Para. 2.5 or 2.6)
- Repeat the operation for other wing
- Stretch a taught line between the two marks
- Measure the distance between the reference line and both main and nose wheel axis (A and B distances respectively)
- Using recorded data it is possible to determine the aircraft C.G. location and the aircraft moment (see following table)

COSTRUZIONARERONAUTICHE P2006T - Aircraft Flight Manual Page 6 - 5

2.5. WEIGHING RECORD

Model **P2006T** S/N:_____ Weighing no. ____ Date:_____

Datum: leading edge vertical

	Kg or Lbs		Meters or feet
Nose wheel weight	$\mathbf{W}_1 =$	Plumb bob distance LH wheel	$A_L =$
LH wheel weight	$W_L =$	Plumb bob distance RH wheel	$A_{R} =$
RH wheel weight	$W_R =$	Average distance $(A_L + A_R)/2$	A =
$W_2 = W_L + W_R =$		Plumb bob distance from nose wheel	B =

Empty weight $We = W_1 + W_2 =$

$$D = \frac{W_2 \cdot A - W_1 \cdot B}{We} =$$

r [Ft]
$$D\% = \frac{D}{1.339} \cdot 100 =$$

[kg] or [lbs]

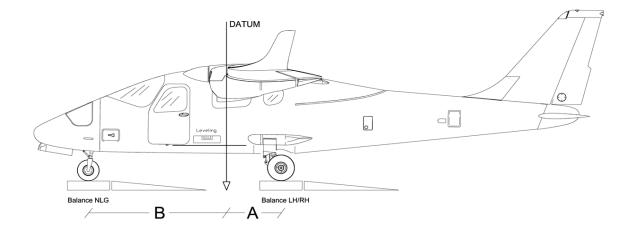
Empty weight moment: $M = (D \cdot We) =$

 $[m \cdot Kg]$ or $[Ft \cdot Lbs]$

Maximum takeoff weight	$W_T =$	[kg] or [lbs]	Signature
Empty weight	We =	[kg] or [lbs]	
Max. useful load W _T - We	Wu =	[kg] or [lbs]	

4th Edition, Rev 0

Section 6 - Weight and balance


WEIGHTS AND C.G.

COSTRUZIONARE P2006T - Aircraft Flight Manual Page 6 - 6

2.6. WEIGHING RECORD (II)

Model **P2006T** *S/N*:_____ *Weighing no.* ____ *Date*:_____

Datum: leading edge vertical

	Kg or Lbs		Meters or feet
Nose wheel weight	$\mathbf{W}_1 =$	Plumb bob distance LH wheel	$A_L =$
LH wheel weight	$W_L =$	Plumb bob distance RH wheel	$A_R =$
RH wheel weight	$W_R =$	Average distance $(A_L + A_R)/2$	A =
$W_2 = W_L + W_R =$		Plumb bob distance from nose wheel	B =

 $Empty\ weight\ \ We=W_1+W_2=$

[kg] or [lbs]

$D = \frac{W_2 \cdot A - W_1 \cdot B}{We} = $ [m] or [Ft] $D\% = \frac{D}{1.339} \cdot 100 =$		1 1 2 70 - 1 339
---	--	------------------

Empty weight moment: M = (D We) =

 $[m \cdot Kg]$ or $[Ft \cdot Lbs]$

Maximum takeoff weight	$W_T =$	[kg] or [lbs]	Signature
Empty weight	We =	[kg] or [lbs]	
Max. useful load W _T - We	Wu =	[kg] or [lbs]	

4th Edition, Rev 0

Section 6 - Weight and balance

WEIGHTS AND C.G.

3. WEIGHTS AND C.G.

C.G. position can be defined by means of the chart below.

The pilot is responsible for ensuring the correct useful load loading.

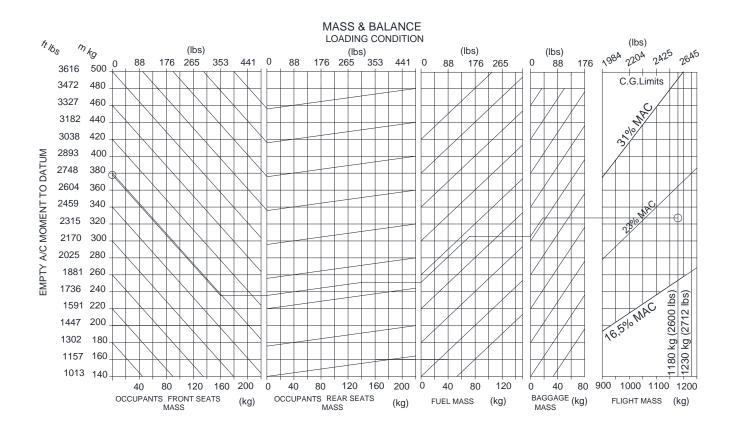


Figure 1

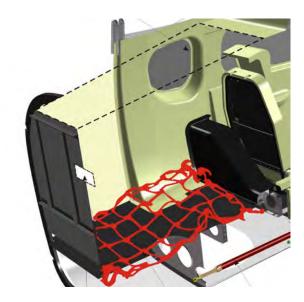
Example

A/C empty mass a	moment 378 kgm
A/C empty mass	790 kg
Occ. front seats	160 kg
Occ. rear seats	140 kg
Fuel	72kg
Baggage	18 kg
A/C T.O. weight	1180kg

4th Edition, Rev 0

Section 6 - Weight and balance

WEIGHTS AND C.G.


4. BAGGAGE LOADING

The baggage loading in the dedicated compartment must be carried out in accordance with diagram addressed on PAR. 03 and with C.G. excursion and weight limitations reported in Section 2.

Pilot is provided with a red tie-down net and snap fasteners allowing for securing the loads on the compartment floor.

Loading the baggage, make sure that you correctly stretched the net which must be secured to the four vertices of the floor.

Section 6 - Weight and balance

BAGGAGE LOADING

INTENTIONALLY LEFT BLANK

5. EQUIPMENT LIST

The following is a list of equipment which may be installed in the *P2006T*. The items marked with an "X" were installed on the airplane described at the beginning of the list and they are included in the Basic Empty Weight.

It is the owner's responsibility to retain this equipment list and amend it to reflect changes in equipment installed in this airplane.

COSTRUZIONALAEROMAUTICHE P2006T - Aircraft Flight Manual Page 6 - 11

Equ	JIPMENT LIST	AIRCRAFT S/N:			DATE:			
Ref.		DESCRIPTION		P/N	I	Inst	Weigнт [kg]	Акм [m]
	-		INSTRUMENTS & AVIO	NICS		•	•	
A-1	2 nd airspeed indicate	tor – UMA T6-311 – 20	0				0.37	-1.4
A-2	2 nd airspeed indicat	tor – Mikrotechna 1116.	B2B2				0.37	-1.4
A-3	2 nd attitude indicate	or – Kelly Manufacturing	g RCA26AK-12				1	-1.4
A-4	2nd altimeter - Unit	ted Instruments 5934PM	-3A84 01770028-05				0.6	-1.4
A-5	2nd altimeter – Mik	crotechna 1128.12B6					0.6	-1.4
A-6	2nd altimeter - Mid	l-Continent 15035-01102	2				0.36	-1.4
A-7	2nd altimeter - Mid	l-Continent 4200-10					0.73	-1.4
A-8	Turn and bank indi	icator – RCA 83 A-11					1.2	-1.4
A-9	Turn coordinator M	Aid Continent 1394T100	-7Z				0.81	-1.4
A-10	Mid-Continent MI	0302					0.73	-1.4
A-11	Garmin GNS-430V	W GPS/WAAS COM/NA	V				3	-1.4
A-12	Garmin GNS-530V	W GPS/WAAS COM/NA	V				3.18	-1.4
A-13	Garmin GMA340 a	audio panel					0.8	-1.4
A-14	Garmin GMA347 a	audio panel					0.8	-1.4
A-15	Garmin SL30 VHF	Garmin SL30 VHF COMM/NAV					1.3	-1.4
A-16	Garmin GTX328 Transponder						1.9	-1.4
A-17	Garmin GTX320 Transponder						1.5	-1.4
A-18	Garmin GTX33 Transponder						1.5	-1.4
A-19	Garmin GTX345R	Transponder					1.5	-1.4
A-20	Becker BXP 6401-	-2-(01) Mode S transpond	ler				0.8	-1.4
A-21	Garmin GI106() V	OR/LOC/GS Indicator					0.4	-1.4
A-22	Mid-Continent MI	D 200-306 VOR/LOC/GS	Indicator				0.4	-1.44
A-23	Kelly Manufacturin	ng RCA15AK-() Directio	onal Gyro				1	-1.4
A-24	ELT Adams Aviati	ion Artex ME406					0.9	0.8
A-25	ELT KANNAD 40	6					0.9	0.8
						_		

COSTRUZIONALAEROMAUTICHE P2006T - Aircraft Flight Manual Page 6 - 12

Εοι	JIPMENT LIST	AIRCRAFT S/N:			DATE:			
Ref.		DESCRIPTION		P/I	J	INST	Weigнт [kg]	Акм [m]
	HONEYWELL B	Bendix/King KCS 55A C	ompass System					
H-1	KI 525A Pictorial Navigation Indicator						1.53	-1.4
H-2	KG 102A Directional Gyro						1.95	1
H-3	KA 51B Slaving C	Control and Compensator U	Unit				0.1	-1.4
H-4	KMT 112 Magnetic Slaving Transmitter						0.15	2.2
	HONEYWELL B	endix/King KR87 ADF	System					
H-5	ADF KR87 receiver						1.5	1
H-6	Indicator KI 227						0.3	-1.4
H-7	Indicator KI 229						1.3	-1.4
H-8	Static inverter Mar	athon PC-50					2	1
	HONEYWELL B	endix/King KN 63 DME	E System					
H-9	Indicator DME KI	DI 572					0.4	-1.4
H-10	Transceiver DME	KN 63					1.3	1
	S-TEC Fifty Five	X Autopilot System						
S-1	Turn coordinator S	S-TEC 6405-14L (Mid Co	ntinent 1394T100-14RB)				0.81	-1.5
S-2	PRGMR/CMPTR	01192-0-2TF					1.36	-1.4
S-3	Roll servo 0105-5-R9						1.31	-0.71
S-4	Pitch servo 0107-1	1-P4					1.31	3.55
S-5	Altitude Transduce	er 0111					0.2	-1.9
S-6	Pitch Trim servo S	-TEC 0105-T11					1.3	2.8
	Becker 3500 ADF	⁷ System						
B-1	ADF Becker 3500	Receiver (RA3502)					1.0	0.92
B-2	RMI Converter (A	C 3504–01)					0.75	0.92
B-3	ADF Antenna (AN	1 3500)					1.7	-0.25
B-4	AK-550-6 DC/DC	converter					1	-0.85
	WX500 Stormsco	ре						
SS-1	Processor (including	ng mounting tray)		805-1150	00-001		1.10	2.51
SS-2	Antenna NY163			805-1093	30-001		0.38	3.60
	Garmin GTS 800	TAS						
T-1	Garmin GTS 800	ΓAS		011-013	56-00		4.75	1.30
T-2	GA 58 Directional	Antennas		010-007	20-00		0.78	-0.30
						L		
						<u> </u>		
						L		

COSTRUZIONALAEROMAUTICHE P2006T - Aircraft Flight Manual Page 6 - 13

Εοι	JIPMENT LIST	AIRCRAFT S/N:			DATE:			
Ref.		DESCRIPTION		P/N	J	Inst	Weigнт [kg]	А RМ [m]
	-		MISCELLANEOUS	5		-	-	
M1	LH Front and rear s E5-01-009-T03	seat GEVEN E5-01-003-'	T01 or E5-01-007-T01 or				9	-0.89
M2	RH Front and rear E5-01-010-T03	seat GEVEN E5-01-004-	T01 or E5-01-008-T01 or				9	0.23
M3	Front Seats (LH &	RH)		26-6-5100-(0	01 & 002)		22	-0.75
M4	Rear Seats (LH & I	RH)		210-10-(5300 801			20	0.32
M5	Fire extinguisher -	Fire Fighting Enterprises	Ltd BA51015-3	001	-		2	-1.5
M6	Fire extinguisher H	H3R-Aviation RTA-600					0.8	-1.5
M7	Fire extinguisher A	MEREX A344T					1.04	-1.5
M8	First aid kit - Eurof	ferramenta s.r.l. FIA2701	60				0.2	0.8
M9	Torch						0.15	-1.5
M10	Battery GILL35 -	13Volt - 23Ah					12.2	3.7

INTENTIONALLY LEFT BLANK

SEZIONE 7 – AIRFRAME and SYSTEMS DESCRIPTION

INDEX

1.	INTRODUCTION	3
2.	AIRFRAME	3
3.	POWERPLANT	9
4.	PEDESTAL CONTROLS	12
5.	CABIN OVER-HEAD PANEL CONTROLS	15
6.	INTERNAL LIGHTS	16
7.	EXTERNAL LIGHTS	17
8.	FUEL SYSTEM	19
9.	LANDING GEAR SYSTEM	21
10.	. BRAKES	25
11.	. VENTILATION	26
12	. CABIN HEAT	26
13.	. SEATS AND SAFETY BELTS	26
14	. DOORS	27
15.	. BAGGAGE COMPARTMENT	
16	. PLACARDS	31
17.	. INSTRUMENTS PANEL	
18.	. ELECTRICAL SYSTEM	40

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

This section provides aircraft and systems description and operation.

2. AIRFRAME

2.1. WING

Each wing consists of a central light alloy torque box which carries all the wing bending, shear and torque loads; an aluminium leading edge is attached to the front spar while flap and aileron are hinged to the rear spar.

The torque box houses an integrated fuel tank and supports the engine mount.

Flap and aileron, respectively located inboard and outboard of wing and made up of light alloy, are constructed with a central spar to which front and rear ribs are jointed. Wrapped-around aluminium stressed skin panels cover all the structures. Steel alloy attachments connect left and right wing to each other.

Following figure shows the left wing fitted with the engine nacelle, fuel tank and composite winglet. Steel alloy attachments link left and right wing to each other.

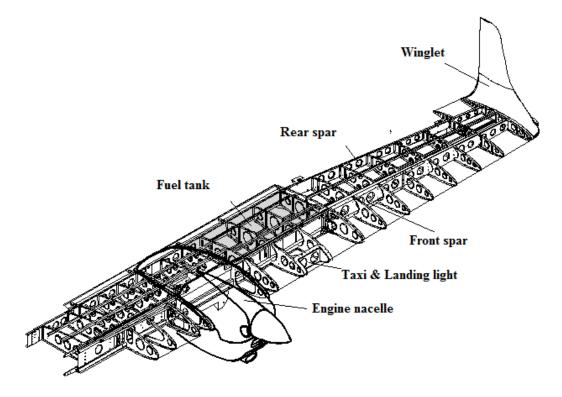


Figure 1. – Left wing structure

4th Edition, Rev 0 Section 7 – Airframe and Systems description

2.2. FUSELAGE

The fuselage is constituted by a light-alloy semi-monocoque structure wrappedaround by stressed skin panels. Radome and stern fairing are of composite material. Cabin and baggage compartment floor is a warping of beams and keelsons supporting the seats guides and other components.

Two spar frames support on the top the wings attachments and on the bottom the *sponson* beans sustaining the main landing gear. The forward frame, to which radome is connected, supports a steel trestle to which the nose landing gear is connected.

The front and rear seats access occur by means of two doors located in the opposite sides of the fuselage; a ditching emergency exit is available on the top of the cabin. In tail cone, two spar frames support the horizontal and vertical empennages attachments.

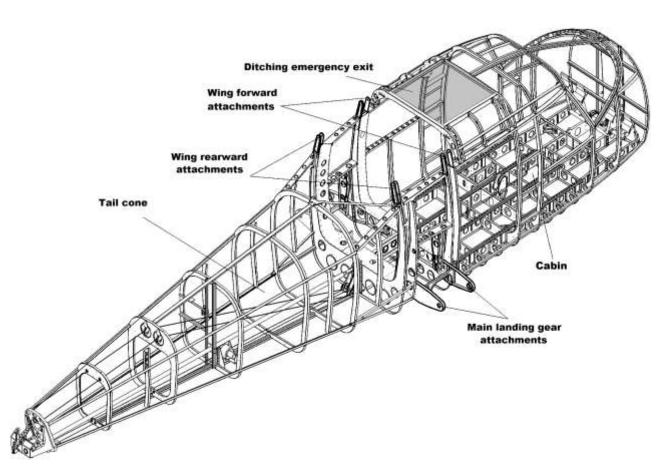


Figure 2. – Fuselage structure

4th Edition, Rev 0

Section 7 – Airframe and Systems description

AIRFRAME

2.3. EMPENNAGES

The vertical tail is entirely metallic: vertical fin is made up of a twin spar with aluminium alloy stressed skin. Rudder, providing directional control of the airplane, is made up of aluminium alloy.

The rudder is connected to the vertical tail at two hinge points. A trim tab system increases directional stability of the airplane.

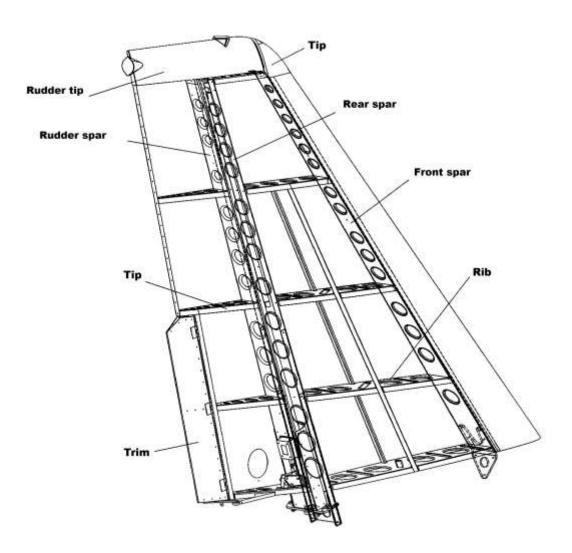


Figure 3. – Vertical empennage structure

4th Edition, Rev 0

Section 7 – Airframe and Systems description

The horizontal empennage is an all-moving type (stabilator); its structure consists of a twin spar to which front and rear ribs are jointed and it is covered by stressed aluminium alloy skin. The trim tab completes the assy.

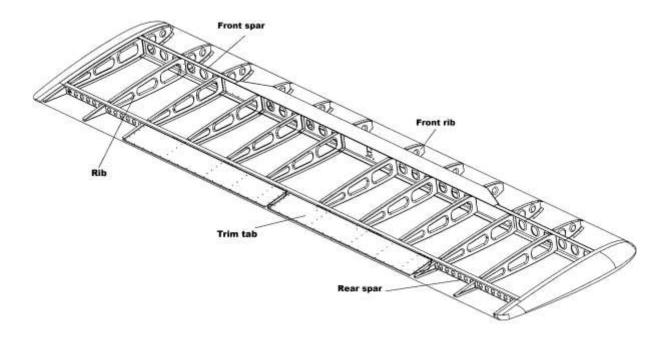


Figure 4. – Stabilator structure

2.4. FLIGHT CONTROLS

The main flight control system controls the airplane in three axes. All primary controls (ailerons, rudder and stabilator) are manually operated by a conventional control column and rudder pedals, pulleys, cables, bellcranks and rods.

The secondary flight controls consist of a two-axis trim system and a flaps system.

Complete dual controls are provided for pilot and co-pilot.

Longitudinal control acts through a system of push-pull rods connected to the control column and moving the stabilator whose anti-tab winglet works also as trim tab. Autopilot pitch servo (if installed) is connected to the push-pull rods system through driving cables.

Longitudinal trim is performed by a small tab positioned on the stabilator and manually operated via a control wheel positioned between the two crew seats. As optional, it is available an electrically operated longitudinal trim which it is also controlled by the autopilot system, when installed.

Trim position is monitored by an indicator on the instrument panel. A trim disconnect toggle switch is provided.

Ailerons control is of mixed type with push-rods and cables; a cable control circuit is confined within the cabin and it is connected to a pair of push-pull rod systems positioned in each main wing which control ailerons differentially.

The U-shaped control wheels, hinged on the top of the control column, control the ailerons. Control wheel motion is transferred to the ailerons through a cable loop, up to the interconnecting rod linking the two push-pull rod systems which finally transmit the motion to the ailerons.

When either aileron control wheel is rotated, the crossover cable rotates the other control wheel.

The left aileron has a trim tab adjustable on ground: its deflection allows for lateral trimming of the airplane.

Both flaps are extended via a single electric actuator controlled by a switch on the instrument panel. Flaps act in continuous mode; the analogue indicator displays three markings related to 0° , takeoff (T/O) and landing (FULL) positions.

An aural warning is generated whenever the flaps are lowered to the FULL position and the landing gear is not down-locked.

Rudder is operated through a cable system. A rudder trim tab allows aircraft directional trimming, especially in case of OEI operation: it is electrically operated via a switch located on the central console placed between crew seats.

Its position is monitored by an indicator on the instrument panel. A trim disconnect toggle switch is provided.

INTENTIONALLY LEFT BLANK

3. POWERPLANT

P2006T is equipped with two four-cylinder four-stroke Rotax 912S engines of 98hp (73kW) each, both rotating clockwise. These are partially liquid cooled and they feature an integrated reduction gear driving constant speed propellers with pitch feathering devices.

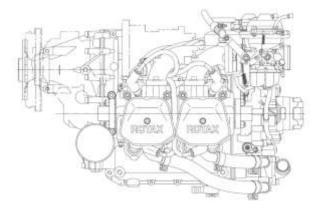


Figure 5. – Rotax 912S

Cooling system is designed for liquid cooling of the cylinders heads and ram-air cooling of the cylinders. The liquid system is a closed circuit with an overflow bottle and an expansion tank.

The coolant flow is forced by a water pump, driven from the camshaft, from the radiator to the cylinder heads. From the top of the cylinder heads the coolant passes on to the expansion tank (item 1, Figure below). Since the standard location of the radiator (2) is below engine level, the expansion tank, located on top of the engine, allows for coolant expansion.

Figure 6. – Liquid cooling system schematic

4th Edition, Rev 0

Section 7 – Airframe and Systems description POWERPLANT

The expansion tank is closed by a pressure cap (3) fitted with pressure relief valve and return valve. At temperature rise and expansion of the coolant, the pressure relief valve opens and the coolant will flow via a hose at atmospheric pressure to the transparent overflow bottle (4). Once cooled down, the coolant will be sucked back into the cooling circuit.

The engine is provided with a dry sump forced lubrication system with an oil pump with integrated pressure regulator. A thermostatic valve regulates the oil flow to the heat exchanger (oil radiator) on the basis of oil temperature: this allows the engine starting in cold conditions.

The oil tank is installed behind the firewall protected from heat sources. Some holes on the bracket structure allow for air ventilation

The reservoir is fitted with a dipstick; a hose, immediately located beneath the filler cap, allows for oil relief discharged in a safe zone in the cowling, far from exhausts and other heat sources.

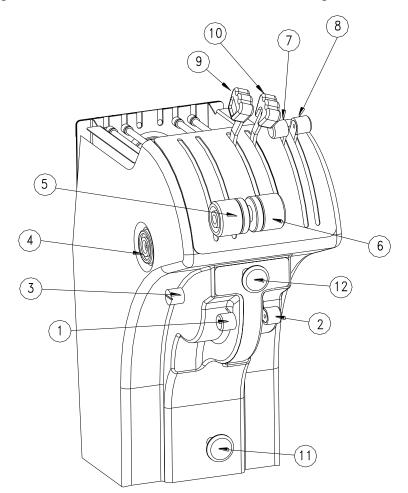
Following powerplant instruments are provided:

- ▶ LH and RH RPM Indicator
- ► LH and RH Manifold Pressure Indicator
- LH and RH Oil Pressure Indicator
- LH and RH Oil Temperature Indicator
- > LH and RH Cylinder Head Temperature Indicator

3.1. ENGINE FEATURES

Manufacturer	Bombardier-Rotax GmbH	
Model	912 S3	
Certification basis	FAR 33, Amendment 15	
Type Certificate	EASA TCDS no. E.121 dated 1st April 2008	
Engine type	4 cylinders horizontally opposed with 1352 c.c. of overall displacement, liquid cooled cylinder heads, ram-air cooled cylinders, two carburetors, integrated reduction gear box with shock absorber.	
Maximum power	73.5 kW (98.6hp) @ 5800 rpm –5 min. maximum	
(at declared rpm)	69.0 kW (92.5hp) @ 5500 rpm (continuous)	

3.2. PROPELLER FEATURES


Manufacturer	MT Propeller	
Type certificate	LBA 32.130/086 (MTV-21 series)	
Model	MTV-21-A-C-F/CF178-05	
Blades/hub	2 wood/composite blades, aluminium hub	
Diameter	1780 mm (no reduction allowed)	
Туре	Variable pitch hydraulically controlled	

3.3. PROPELLER GOVERNOR FEATURES

Manufacturer	MT Propeller
Model	P-875-12
Туре	Hydraulic

4. PEDESTAL CONTROLS

Following picture shows the controls installed on the central pedestal.

Figure 7. – Pedestal controls

No	Description
1 and 2	Choke control
3	Choke friction knob
4	Upper levers friction knob
5-6	LH and RH Throttle lever
7-8	LH and RH Carburetor Heating lever
9-10	LH and RH Propeller Pitch Control lever
11	Parking brake
12	Windshield defrost control knob

Section 7 – Airframe and Systems description PEDESTAL CONTROLS

NOTE

Aircraft not embodying the Design Change 2006/66 "New Powerplant control setting layout" or the SB 039-CS "P2006T New powerplant controls layout" feature a different pedestal levers layout: propeller and carb. heat levers position are inverted.

It is possible to adjust the throttle, propeller and carburettor heat levers friction by appropriately tightening the friction knob located on the central console.

A similar device is provided for engine choke controls.

Carburettor heat control knobs are located between throttle and propellers levers; when the knobs are fully pulled backwards, carburettors receive maximum hot air.

During normal operations, the knobs are fully forward set (carburettors heating set to OFF).

The console houses also the parking brake and windshield defrost control knobs.

INTENTIONALLY LEFT BLANK

5. CABIN OVER-HEAD PANEL CONTROLS

Following picture shows the controls installed on the cabin over-head panel.

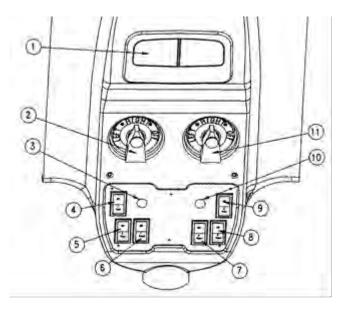


Figure 8. – Cabin head panel controls

No	Description	
1	Cabin Light	
2	LH Fuel selector valve	
3	LH Electric Starter	
4	LH electric fuel pump	
5	LH Engine ignition 1	
6	LH Engine ignition 2	
7	RH Engine ignition 1	
8	RH Engine ignition 2	
9 RH electric fuel pump		
10 RH Electric Starter		
11	RH Fuel selector valve	

Section 7 – Airframe and Systems description CABIN OVER-HEAD PANEL CONTROLS

6. INTERNAL LIGHTS

Internal lights system is composed by following equipment:

• Cabin light, providing lighting for crew and passengers compartment;

• **Instruments lights**, which in turn are composed by three sub-systems each one fitted with dimming device:

- Switches built-in lights
- Avionics lights
- Cockpit lights
- Emergency light

The **cabin light** is a ceiling light, fitted with control switches, located on the overhead panel in correspondence of the crew seats.

About the **instrument lights** (controlled by a switch on the RH instrument panel), the switches built-in lights concern the instrument panels switches lighting, the avionics lights concern the avionic equipment lighting and the cockpit lights concern two lights located on the over-head panel illuminating LH and RH instrument panels (see Figure below).

All above mentioned lights are supplied by the battery bus apart from the **Emer-gency light** which is directly connected to the battery. It is a five-leds light located in the over-head panel (see Figure below) controlled by a switch installed on the LH breakers rack.

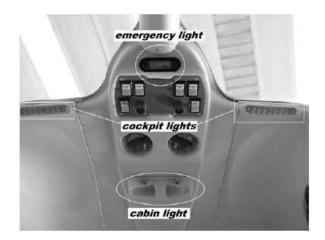


Figure 9. – Over-head panel lights arrangement

7. EXTERNAL LIGHTS

External lights system consists of the following equipment (see Figure below):

• NAV Lights: they provide, by means of three position lights, the aircraft flight direction identification.

• **Strobe Lights**: they provide aircraft identification to prevent collision. They are located, like the above mentioned NAV lights, on the winglets and on the top of the vertical fin.

• **Taxi Light**: supports taxi maneuvering on the ground at night. It is installed on the left wing leading edge.

• Landing Light: provides ground reference information during final approach, touchdown, ground roll and take off and illuminates any major obstructions in the airplane approach glide path or on runway at night. It is installed on the left wing leading edge.

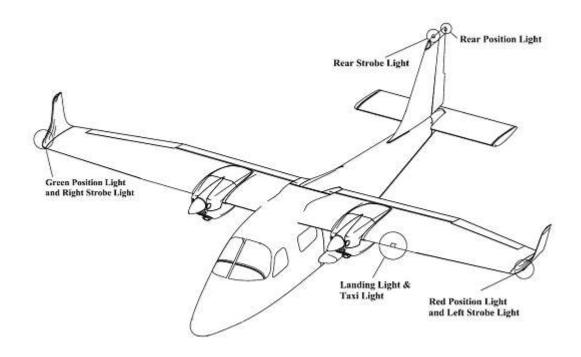


Figure 10. – External lights arrangement

Section 7 – Airframe and Systems description EXTERNAL LIGHTS

All mentioned lights, whose circuits are protected by dedicated breakers, are activated by the related switches on the right instrument panel: see below.

Figure 11. – Lights switches panel

8. FUEL SYSTEM

Fuel system consists of two integrated tanks inside the wing torque boxes and fitted with inspection doors.

Each fuel tank has a capacity of 100 litres and is equipped with a vent valve (its outlet is located on the lower wing skin) and a sump fitted with a drain valve for water/moisture drainage purposes.

An electric fuel pump feeds the pertinent engine in case of engine-driven pump failure. The fuel Gascolator (a sediment-filter bowl) is located beneath the engine nacelle, between the fuel tank and the electrical pump, in correspondence of the fuel system lowest point. It is fitted with a drain valve which allows for the overall fuel line drainage.

Fuel quantity indicators and fuel pressure indicators for each engine are located on the RH instrument panel.

In normal conditions, to supply fuel to engines, each engine pump sucks fuel from the related tank; crossfeed is allowed by fuel valves located on the front spar and controlled by Bowden cables from the fuel selectors located on the cabin overhead panel.

Left fuel selector manages the left engine feeding, allowing fuel supply from the left fuel tank or from the right one (crossfeed).

Right fuel selector manages the right engine feeding, allowing fuel supply from the right fuel tank or from the left one (crossfeed).

Each selector can be set in OFF position only pulling and simultaneously rotating the lever: this avoids an unintentional operation.

Use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. Make reference to Rotax Maintenance Manual who provides dedicated checks due to the prolonged use of Avgas.

System schematic is shown on the following Figure.

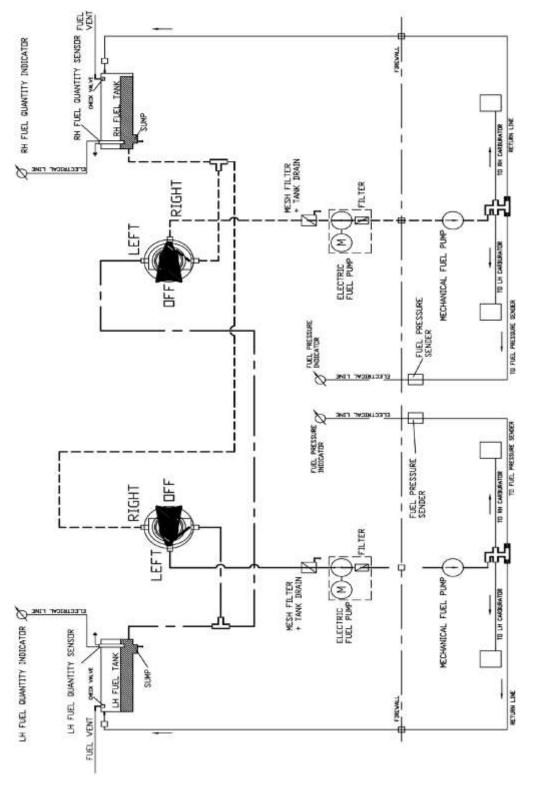
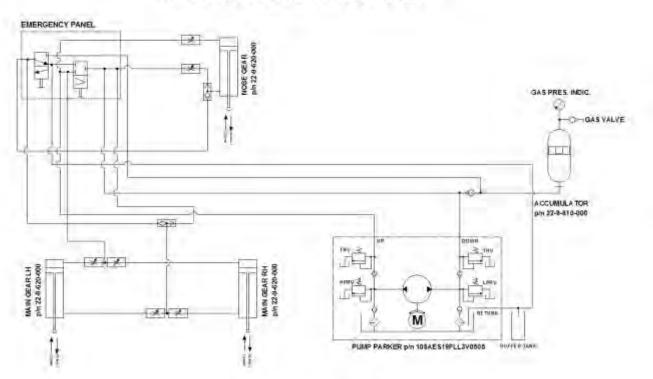


Figure 12. – Fuel system schematic

4th Edition, Rev 0

Section 7 – Airframe and Systems description

FUEL SYSTEM


9. LANDING GEAR SYSTEM

The landing gear retraction system is of electro-hydraulic type, powered by a reversible pump which is electrically controlled by the LG control knob located on the LH instrument panel and by the legs position micro switches: these ones allow for detecting landing gear "down-locked" and "up" positions and for alerting the pilot by aural means should the approach and landing configuration be incorrect, in terms of flaps/throttle levers/landing gear position, in order to avoid an unintentional gear-up landing.

The system operates in two modes: normal and emergency.

Normal operation provides gear extension and retraction by means of hydraulic jacks. Gears extension is helped by gravity also.

Emergency operation only provides landing gear extension by means of a hydraulic accumulator which discharges pressurized oil in the above mentioned jacks.

HYDRAULIC SCHEMATIC DIAGRAM

Figure 13. LG hydraulic system schematic

4th Edition, Rev 0

Section 7 – Airframe and Systems description LANDING GEAR SYSTEM

Hydraulic oil, contained in an integrated reservoir located inside the Hydraulic Power Pack, is pressurized by a reversible electric pump: as the LG control knob is placed in either the UP or DOWN position, the pump directs the fluid through the related pressure line toward each hydraulic jack.

In order to prevent an inadvertent LG retraction, the control knob must be pulled before being pushed upward for UP command.

The emergency hydraulic accumulator is used for the landing gear extension: normal extension line and emergency extension line converge in correspondence of the shuttle valves (two valves: the first one for NLG and the second one for MLG emergency operation).

The emergency accumulator nitrogen pressure indicator is located on the tail cone, left side; on ground, a red push-button located beneath the pressure indicator allows the electrical pump for charging the accumulator should the nitrogen pressure be below the lower limit indicated on the placard.

Emergency extension is controlled by two distributors located on the cabin floor, under a removable cover in correspondence of the pilot seat.

The LG indication system is electrical and it is composed by the following main components:

- UP/DN limit micro-switches
 leg position lights, 3 green
- ➤ transition light, 1 red
- ➢ pump light, 1 amber
- \succ push to test

(6 couples, 2 for each leg)(turned ON when the pertinent leg is extended and locked and located on the LH instrument panel)(turned ON during transition phases)(GEAR PUMP ON caution amber light turned ON when the pump is electrically supplied)(for landing gear red and green lights operational check)

The three green lights illuminate only when the respective gear is "down-locked"; the red light indicates the gear is in transit "up" or "down" and the amber caution light GEAR PUMP ON indicates that the pump is electrically supplied.

The red transition light extinguishes only when all the three gear legs are "downlocked" or they are "up" while the amber caution light extinguishes only when the electrical pump is "off".

The Up/Down limit switches control the LG lights lighting and pump operation on the basis of LG configuration set by the pilot through the LG control knob.

A "push to test" button is used to check that the landing gear position lights are operating.

A warning horn alerts the pilot when the LG control knob is in UP position and at least one of the two throttle levers and/or flaps are respectively set to idle and to LAND position.

During emergency extension, LG position lights work as per normal extension mode: for this reason the LG control knob must be set on DOWN position before starting the emergency procedure.

IMPORTANT

After each emergency landing gear extension, apply the restoration procedure described in the AMM.

INTENTIONALLY LEFT BLANK

10. BRAKES

The A/C is provided with an independent hydraulically actuated brake system for each main wheel. A master cylinder is attached to each pilot/co-pilot's rudder pedal: see schematic below.

Hydraulic pressure, applied via the master cylinders, enters the brake via lines connected to an inlet fitting on the wheel brake caliper.

A parking brake valve, mounted in correspondence of the cabin floor and operated by a knob on the cockpit central pedestal, intercepts the hydraulic lines, once the system is pressurized, to hold the brake assemblies linings tightened round the main wheels brake discs.

Brakes can be operated from both pilot's and co-pilot's pedals: a single vented oil reservoir feeds the pilot side master cylinders which are connected, via hoses, with the co-pilot's side ones.

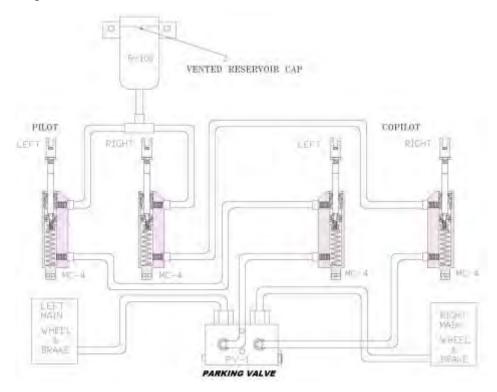


Figure 14. Brake system schematic

NOTE

On the ground, when a pedal is pushed to steer the airplane, do not operate the opposite toe brake until the pedals are back aligned again. This prevents pedals mechanism from being damaged.

11. VENTILATION

If required, pilot allows for ram-air entering the cabin via the two outlet ports respectively located on the left and right side of the instruments panel. Other two ram-air ventilation outlets are located on the cabin head, in the passengers' zone.

12. CABIN HEAT

The cabin heating system utilizes hot air coming from engines heat exchangers: here cold ram-air is warmed by engine exhaust gases and then it is routed to the heating system hoses.

The cabin heat control knobs are positioned on the lower side of the LH instrument panel; when knobs are fully pulled, cabin receives maximum hot air.

Left knob controls the warm air from LH engine heat exchanger, right knob controls the warm air from RH engine heat exchanger.

Crew heating system outlet ports are located on the cabin floor, near the pedestal; for passengers zone it is provided an outlet port on the cabin head.

Windshield defrost is operated via a knob positioned on the pedestal: when knob is pulled the hot air flow for crew heating is deviated to the windshield.

13. SEATS AND SAFETY BELTS

In correspondence of the seats, three fitting points safety belts are provided; belt adjustment is via the sliding buckle located on the belt metal hook.

Seats are built with light alloy tube structure and synthetic material cushioning. It is possible to perform following seat adjustments:

Horizontal - pulling the lower front lever and sliding the seat

Vertical - operating the lever located on the outward seat side

Seat back inclination – unlocking it via the lateral knob

These adjustments ensure the crew and passengers comfort.

14. DOORS

The cabin main door is located forward, on the left side of the fuselage while the emergency exit (passenger door) is located aft, on the right side of the fuselage.

On the top of the cabin it is located the ditching emergency exit: see figure below.

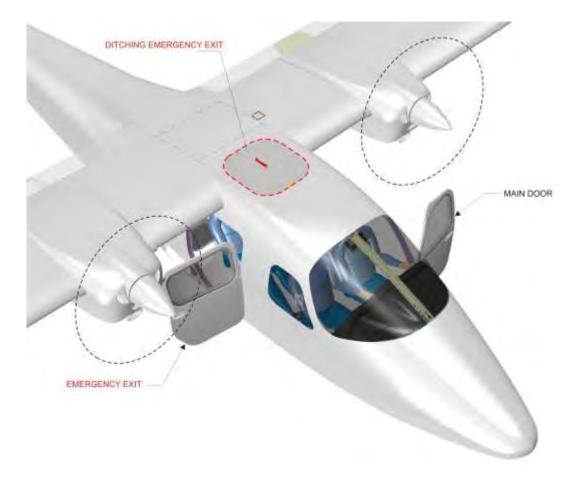


Figure 15. Doors location

Being the main door located in correspondence of the propeller disc, its operation is limited to the engine shut-down condition.

In fact, in order to prevent crew injuries, an electro-mechanical device locks the door latch when left engine runs. A pressure switch senses engine oil pressure and allows for electrical supply to a solenoid which engages the door lock mechanism.

This prevents the latch opening when left engine runs but, if needed, the device can be also manually by-passed operating either from the door inside panel or from outside. Instructions are reported on the placards near the by-pass lever, located in correspondence of the latch: to unlock it is necessary to push and hold the red tab down, after that the door can be opened operating the handle.

After engine shut-down, the pressure drop can have a certain delay, preventing the door from being opened by normal means: do not force the handle but operate the override system above mentioned.

In any case, the electric lock becomes disengaged after a complete loss of the electric power.

Two switches engage respectively when the door and the latch are closed. Should one or both switches be released, the MAIN DOOR OPEN warning light is turned ON.

The emergency exit is fitted with the same safety device: in this case the pressure switch allowing for solenoid operation is activated from right engine oil pressure line; should be the door "open" or "closed and unlocked", the REAR DOOR OPEN warning light is turned ON.

Any voluntary operation of the manual by-pass solenoid lock causes related door warning light is turned on.

The ditching emergency exit is manually operated turning the handle and pushing outward the door.

The yellow fluorescent painted handle, which can be operated also from outside, is fitted with a safety wire assuring removal effortlessness. When the door is open, it stays connected to the fuselage by means of two cables which allow for door opening forward.

15. BAGGAGE COMPARTMENT

The baggage compartment is located behind the passengers' seats. The baggage must be uniformly distributed on the floor and the weight cannot overcome 80kg. Make sure that the baggage is secured before the flight.

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

16. PLACARDS

In addition to the limitation placards reported on Section 2, following placards are installed on the aircraft.

Additionally, nearby the placards listed below (English language), directly-translated placards in the language of the country in which the airplane is registered can be installed, when required by the specific NAA.

Description	Placard	Place	
ELT equipment location	ELTHERE	Baggage compartment, right side	
First Aid Kit location	FIRST AID KIT	Baggage compartment, aft cover panel	
Fire extin- guisher loca- tion		Cockpit floor, pilot side	
Emergency gear extension compartment location	PULL TO OPEN EMERGENCY GEAR EXTENSION MAX 93KIAS	Removable cap	

Description	Placard	Place
Emergency gear extension instructions	EMERGENCY OPERATIONS FIRST DISCHARGE WENERGENCY	Emergency distribu- tors compartment
Alternate static port location	ALTERNATE STATIC PORT on the pedestal right side	Central pedestal, left side
Alternate static port operating instructions	ALTERNATE STATIC PORT	Central pedestal, right side
Static ports lo- cation	STATIC PORT KEEP CLEAN	Static ports: fuselage - both sides
Battery com- partment loca- tion	OPEN HERE 1/4 TURN BATTERY INSIDE	Fuselage tail, left side
EXT power connection: socket sche- matic and in- structions	EXT POWER CONNECTION (MASTER OFF) (D) (D) (D) (MASTER OFF) (MASTER OFF	Fuselage tail, left side

4th Edition, Rev 0

Section 7 – Airframe and Systems description

Description	Placard	Place
Landing gear hydraulic ac- cumulator: low pressure limit	LOW PRESSURE LIMIT	LG hydraulic com- partment cap (fuselage tail, left side)
LG hydraulic compartment location	LANDING GEAR HYDRAULIC COMPARTMENT	Fuselage tail, left side, in correspondence of LG hydraulic com- partment cap
Towing limita- tions	CAUTION TOWING MAXIMUM TURNING ANGLE: 20° EITHER SIDE OF CENTER	Nose LG forward door
Stabilator ex- cursion range	5° 0° 16°	Fuselage tail, left side, in correspondence of the stabilator leading edge
Aircraft grounding	CONNECT THE AIRCRAFT TO ELECTRICAL GROUND BEFORE REFUELING	Close to the fuel filler cap
Engine coolant expansion tank location	COOLANT	Engine nacelle top side

4th Edition, Rev 0

Section 7 – Airframe and Systems description

Description	Placard	Place
Steel boards: a/c identifica- tion marks	• <i>I-TELT</i> • • TECNAM srl • A/c: P2006T • S/N: 001 • T.C.: n" EASA X	Fuselage tail, left side
Main LG tires inflation pres- sure values	(Sample) TIRES INFL. PRESSURE MAIN LG	MLG leg, LH and RH
Nose LG tire inflation pres- sure values	2.3bar/33psi TIRES INFL. PRESSURE NOSE LG 1.7bar/24psi	Nose LG fork

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

Section 7 – Airframe and Systems description

17. INSTRUMENTS PANEL

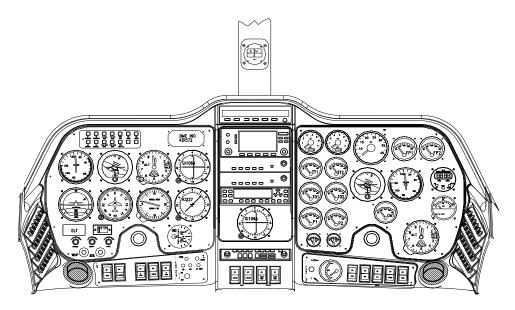
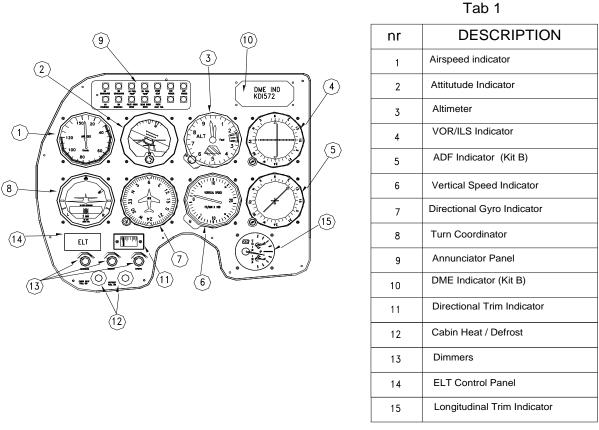
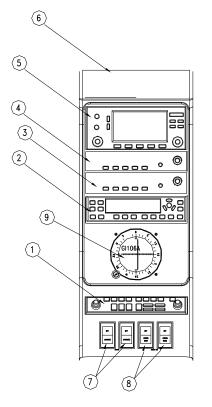


Figure 16. – Instruments panel (typical layout)




Figure 17. – LH Instruments panel (typical layout)

4th Edition, Rev 0

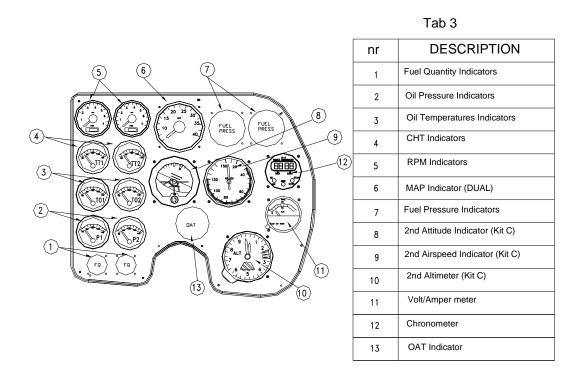
Section 7 – Airframe and Systems description

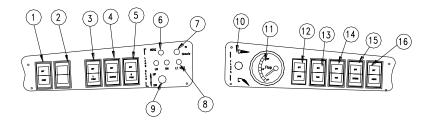
INSTRUMENTS PANEL

KTECNAM P2006T - Aircraft Flight Manual Page 7 - 38

Tab 2					
nr DESCRIPTION					
1	Audio Panel				
2	Transponder				
3	ADF (Kit B)				
4	COMM/NAV SL30 (Kit A)				
5	GPS/NAV/COMM GNS 430				
6	Available				
7	Avionic Switches				
8	Cross Bus Switches				
9	VOR/ILS Indicator				

Figure 18. – Central instruments panel (typical layout)




Figure 19. – RH Instruments panel (typical layout)

4th Edition, Rev 0

Section 7 – Airframe and Systems description

INSTRUMENTS PANEL

KTECNAM P2006T - Aircraft Flight Manual Page 7 - 39

Tab 4

nr	DESCRIPTION			
1	Pitot Heating Switch			
2	Available			
3	LH Field			
4	Battery Master Switch			
5	RH Field			
6	Landing Gear lights			
7	Unsafe Light			
8	Light Test			
9	Landing Gear lever			

nr	DESCRIPTION
10	Flap Control
11	Flap Indicator
12	Landing Light Switch
13	Taxi Lights Switch
14	Position Lights Switch
15	Strobe Lights Switch
16	Instrument Lights Switch

Figure 20. – Switches panels

18. ELECTRICAL SYSTEM

Primary DC power is provided by two engine-driven generators which, during normal operations, operate in parallel.

Each generator is rated at 14,2-14,8 Vdc, 40 Amp, and it is fitted with an integrated regulator, which acts to maintain a constant output voltage, and with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by generator failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

Secondary DC power is provided by a battery (lead type - Gill Teledyne G35, 12 V, 38-Ah in 20h run time) and an external DC power source can be connected to the aircraft DC distribution system.

On the instruments panel, right side, it is installed a voltmeter/ammeter. The ammeter section can indicate the current supplied by either left or right generator switching a dedicated selector.

There are five different busses (make reference to Figure 11):

- Battery bus
- LH Generator bus
- RH Generator bus
- LH Avionic bus
- RH Avionic bus

The distribution system operates as a single bus with power being supplied by the battery and both generators but it is possible to separate the left busses from the right busses when required by means of the Cross Bus switches.

All electrical loads are divided among the five busses on the basis of their importance and required power: equipment with duplicate functions are connected to separate busses.

The Battery bus, which supplies the most important loads, is energized from three sources: the battery and both generators. This allows the bus for remaining active also in case of two independent faults in the supply paths.

The following loads are connected to the battery bus:

Battery Bus
Audio Panel
VHF COMM 1
NAV 1
GPS
LH and RH Fuel electrical pump
LH and RH Fuel pressure
LH and RH Fuel quantity
LH and RH oil pressure
LH and RH oil temperature
LH and RH CHT
LH and RH RPM indicator
LH Attitude indicator
Cabin lights
Cockpit lights
Switches built-in lights
Avionics lights
Annunciator Panel
Strobe lights
Flaps
Doors pressure switches
Engine hour meter (2 units)
OAT
Turn coordinator
LG hydraulic pump
LG indicating & control system
LH and RH Fire detector
12V cabin electrical power sockets (2 units)

In addition, directly on the battery, the following devices are connected:

• Emergency back-up attitude indicator (RH attitude indicator – usually supplied from RH generator bus), when installed;

- Emergency Light
- Chronometer

The first two devices are controlled by the pertinent switches located on the LH breakers rack.

The other loads are so divided	among following busses:
--------------------------------	-------------------------

LH GEN Bus	LH Avionic Bus		
Pitot heat	DME		
Landing light	Transponder		
Taxi light	Encoder altimeter		

RH GEN Bus	RH Avionic Bus
NAV lights	ADF
Rudder trim	COM 2
Stall warning	NAV 2
RH attitude indicator	A/P (*)
	A/P Pitch Trim (*)

(*) if installed

On the central pedestal (see Figure below) there are seven switches disposed on two rows: on the first row there is the MASTER SWITCH which allows for connecting, through the battery relay, the battery to the battery bus.

LH and RH FIELD switches control the pertinent generator: setting the switch to OFF puts the pertinent generator off-line.

In correspondence of the second row there are 4 switches LH/RH AVIONIC and LH/ RH CROSS BUS.

Figure 21. Central pedestal switches console

The first two allow, through a relay, for cutting off the power supply to the pertinent avionic bus.

The second ones allow, through a relay, for realizing the parallel connection between the pertinent generator bus and the battery bus. Setting these ones to OFF, the pertinent generator bus (and related avionic bus supplied) is separated from the battery bus and from opposite generator bus.

When both generators are correctly operating and all above mentioned switches are in ON position, all the busses are connected to the generators.

The ignition switches, two for each engine and grouped on the over head panel, are instead independent from the airplane electrical system (generation and distribution); they only control and open the engine electrical circuit

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

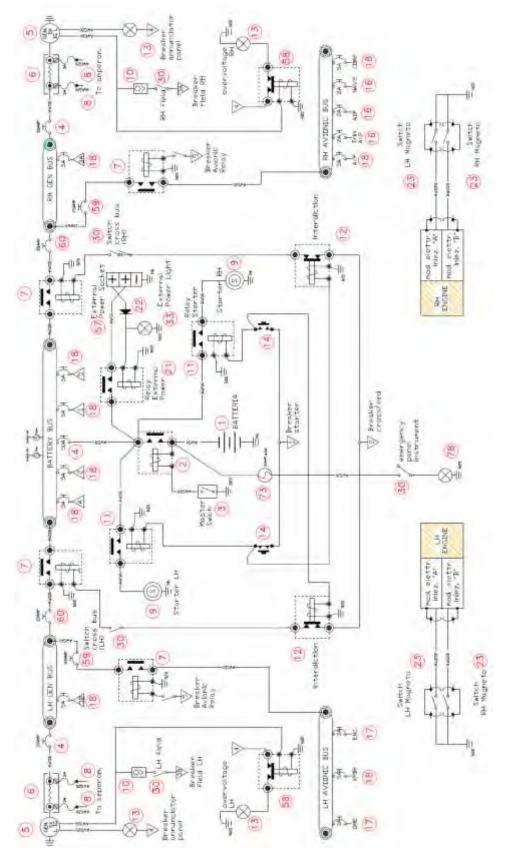


Figure 22. – Electrical system schematic

4th Edition, Rev 0

Section 7 – Airframe and Systems description

ELECTRICAL SYSTEM

WTECNAM P2006T - Aircraft Flight Manual Page 8 - 1

SECTION 8 – AIRCRAFT CARE and MAINTENANCE

INDEX

1. In	troduction	3
2. In	spection intervals	3
3. Ai	ircraft changes or repairs	3
4. M	aintenance	4
4.1.	Refuelling	
	Oil level control	
4.3.	Landing gear tires pressure control5	
5. G	round towing, parking and mooring	6
5.1.	Towing	
5.2.	Parking	
5.3.	Mooring7	
6. CI	eaning	8
	Windows	
6.2.	External surfaces8	
6.1	Propeller	
6.2	- Engine	
6.3	Internal surfaces9	
7. Ic	e removal	9

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

This Section deals with main care and maintenance operations for *P2006T*.

Refer to Aircraft Maintenance Manual to establish the controls / inspections / maintenance tasks (scheduled and unscheduled) to be performed.

2. INSPECTION INTERVALS

Scheduled inspections must be performed in accordance with the instructions addressed on the Aircraft Maintenance Manual. Independently from the aircraft flight hours, an annual inspection has to be performed.

The first scheduled engine inspection must be carried out after first 3/6 hours. All required inspections are reported in the Aircraft Maintenance Manual.

As far as the scheduled/unscheduled engine maintenance is concerned, refer to the engine manufacturer Maintenance Manual.

Unscheduled inspections/maintenance tasks are necessary when one or more of following conditions occur:

- 1. Emergency landing
- 2. Breaking / damage of propeller (or in case of simple impact)
- 3. Engine fire
- 4. Lights damage
- 5. Any type of damage or failure

3. AIRCRAFT CHANGES OR REPAIRS

Aircraft changes or repairs must be performed in accordance with Aircraft Maintenance Manual and only by TECNAM authorized personnel.

4. MAINTENANCE

4.1. **REFUELLING**

- Do not perform aircraft refuelling near flames, sparks or similar.
- Avoid fuel contact with the skin: a skin corrosion could occur.
- Make sure that a fire extinguisher is available nearby during refuelling operations.

- Make sure that overall aircraft instrumentation is turned OFF before performing the refuelling.
- Do not operate switches and/or pushbuttons inside the aircraft during refuelling operation; make sure that crew left the aircraft before performing refuelling.
- Make sure that the aircraft is electrically connected to the ground.

4.2. OIL LEVEL CONTROL

- 1. Open the inspection cap on the engine nacelle
- 2. Prior to oil check, switch off both ignitions circuits and turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank, or let the engine idle for 1 minute. This process is finished when air is returning back to the oil tank and can be noticed by a murmur from the open oil tank.
- 3. Clean the dipstick and soak it in the reservoir
- 4. Remove dipstick and read oil level
- 5. If required, replenish oil: oil level should be between max. and min. mark of the oil level dipstick
- 1. Close the inspection cap
- 2. Repeat the procedure for the other engine

4.3. LANDING GEAR TIRES PRESSURE CONTROL

- 1. Remove wheel dust cover (on main LG wheels)
- 2. Unscrew the tire cap
- 3. Connect a gauge
- 4. Read the pressure value
- 5. If required, rectify the pressure (nose tire 1.7 Bar / 24 Psi, main landing gear tires 2,3 Bar / 33 Psi)
- 6. Fit the tire cap
- 7. Install wheel dust cover (on main LG wheels)

5. **G**ROUND TOWING, PARKING AND MOORING

5.1. Towing

When the a/c is moved on the ground, either manually or by towing, the Master Switch must be turned ON until the a/c is parked.

To tow the aircraft it is necessary to use a metal stiff bar connected to the nose gear.

Do not turn nose wheel above 20° either side of center: greater steering angles can damage the wheel stop. The tow bar must be removed before engines starting.

5.2. PARKING

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake
- 3. Install control locks
- 4. Secure pilot control wheel by wrapping the seat belt around it

Do not engage the parking brakes at low ambient temperature, when an accumulation of moisture may cause the brakes to freeze, or when they become hot from severe use. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para. 5.3.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

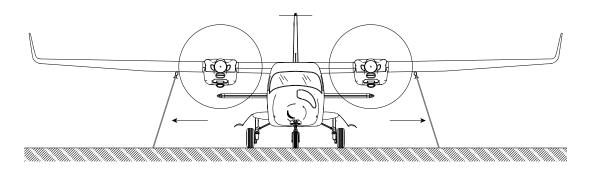
5.3. MOORING

The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

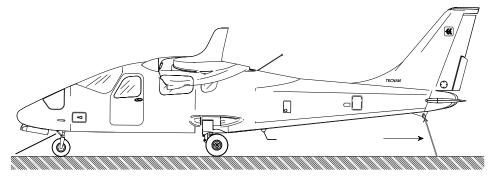
Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind, if practical
- 2. Center nose wheel and engage parking brake and/or use the wheel chocks



Do not engage the parking brakes at low ambient temperature, when an accumulation of moisture may cause the brakes to freeze, or when they become hot from severe use. In these cases use wheel chocks.

- 3. Secure pilot control wheel by wrapping the seat belt around it
- 4. Assure that flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks
- 7. Install protective plugs
- 8. Close and lock cabin doors.
- 9. Secure tie-down cables to the nose gear leg (in correspondence of the wheel fork) and to the wings and tail cone tie-down rings at approximately 45 degree with respect to the ground. (Refer to following figures)



Additional preparation for high winds includes tie-down ropes from the main landing gear forks employment.

Mooring – front view

Section 8 – Aircraft Care and Maintenance

Mooring – side view

6. CLEANING

Aircraft surface must be kept clean to ensure expected flight performance. Excessively dirty surfaces can affect normal flight conditions.

6.1. WINDOWS

For windows cleaning, it is allowed the use of acrylic products employed for glass and Plexiglas surfaces cleaning.

6.2. EXTERNAL SURFACES

Aircraft surface is cleaned with soapy water; they are not allowed solvents or alcohol based products. Died insects must be removed using hot water. It is advisable to avoid outside aircraft parking for long periods; it is always convenient to keep the aircraft in the hangar.

6.1 **PROPELLER**

To preserve its functionality avoiding wear and corrosion, the propeller manufacturer uses, for external surface painting, an acrylic paint which is resistant to all solvents. In any case it is advisable to clean the propeller using exclusively soapy water.

6.2 ENGINE

Engine cleaning is part of the scheduled maintenance. Refer to the engine manufacturer Maintenance Manual for operating and for planning its cleaning.

6.3 INTERNAL SURFACES

Interiors must be cleaned with a rate of 3 to 6 months. Any object present in the cabin (like pens, lost property, maps etc) must be removed.

The instrumentation as a whole must be cleaned with a humid cloth; plastic surfaces can be cleaned with suitable products.

For parts not easily accessible, perform cleaning with a small brush; seats must be cleaned with a humid cloth.

7. ICE REMOVAL

Anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

INTENTIONALLY LEFT BLANK

SECTION 9 – SUPPLEMENTS

INDEX

1.	Introduction	. (
2	Sunnlaments lists	

SUPPLEMENTS LIST FOR AIRPLANES WITH ANALOGUE INSTRUMENTS

Supplement no. A1 – Garmin GNS-430W GPS/WAAS COMM/NAV
Supplement no. A2 – Garmin SL30 VHF COMM/NAV
Supplement no. A3 – Garmin GMA340 audio panel
Supplement no. A4 – Garmin GTX328 Mode S transponder
Supplement no. A5 – KR 87 ADF System
Supplement no. A6 – KN 63 DME System
Supplement no. A7 – KCS 55A Compass System
Supplement no. A8 – Garmin GNS-530W GPS/WAAS COMM/NAV
Supplement no. A9 – Garmin GTX330 Mode S transponder
Supplement no. A10 – Garmin GMA347 audio panel
Supplement no. A11 – Becker BXP 6401-2-(01) Mode S transponder
Supplement no. A12 – S-TEC Fifty Five X Autopilot
Supplement no. A13B – GTN 650 equipment
Supplement no. A14 – Engine starting battery
Supplement no. A15 – Power supply from built-in generators
Supplement no. A16 – AFM supplement for CIS operators
Supplement no. A17 – Brazilian AFMS
Supplement no. A18 – Chinese AFMS
Supplement no. A19 – Increased MTOW - 1230 KG (MOD 2006/015)
Supplement no. A20 – Increased VIe/VIo
Supplement no. A21 – South African AFM
Supplement no. A22 – Argentine AFM
Supplement no. A23 – Ukrainian AFM
Supplement no. A24 – SMP for Analogic Configuration
Supplement no. A25 – Alternators with 70A
Supplement no. A26 – Mogas MG95 IS 2796:2008
Supplement no. A27 – Cancelled

SUPPLEMENTS LIST FOR AIRPLANES WITH GARMIN G950 AND G1000 NXI

Supplement no. G1 – Garmin G950 IFDS Supplement no. G2 – S-TEC Fifty Five X Autopilot for GARMIN G950 Supplement no. G3 – KR 87 ADF System for GARMIN G950 Supplement no. G4 – KN 63 DME System for GARMIN G950 Supplement no. G5 – Engine starting battery Supplement no. G6 – Power supply from built-in generators Supplement no. G7 – AFM supplement for CIS operators Supplement no. G8 – Brazilian AFMS Supplement no. G9 – Chinese AFMS Supplement no. G10 - Increased MTOW - 1230 KG (MOD 2006/015) Supplement no. G11 – Increased Vie/Vio Supplement no. G12 – South African AFM Supplement no. G13 – Alternators with 70A Supplement no. G14 – SMP for Digital Configuration Supplement no. G15 – RESERVED Supplement no. G16 – MD302 Alternative Stand-By Instrument Supplement no. G17 – Stormscope Supplement no. G18 – Cancelled Supplement no. G19 – G1000 NXi, Increased MTOW, Increased V_{LE}/V_{L0} and MD302 Supplement no. G20 – GARMIN GTX345R Transponder Supplement no. G21 – BECKER 3500 ADF for GARMIN NXi Supplement no. G22 - GARMIN GTS800 TAS for GARMIN NXi

1. INTRODUCTION

This Section concerns the supplemental manuals of additional (or optional) instrumentation equipping the *P2006T*.

Two lists are reported: the first one applies to airplanes with analogue instruments, the second one applies to airplanes embodying the Design Change MOD2006/002 "Garmin G950" or MOD2006/271 "Garmin G1000 NXi".

EXTECNAM P2006T - Aircraft Flight Manual

2. SUPPLEMENTS LISTS

Aircraft S/1	N: Registration ma	rks:		Date:		
SUPPLEMENTS LIST FOR AIRPLANES WITH ANALOGUE INSTRUMENTS						
Sup No		Day no		APPLICABLE:		
Sup. No.	Title	Rev. no.	Date	YES	NO	
A1	Garmin GNS-430W Gps/VHF Comm/Nav					
A2	Garmin SL30 VHF Comm/Nav					
A3	Garmin GMA 340 Audio Panel					
A4	Garmin GTX 328 Mode S Transponder					
A5	Bendix-King Honeywell KR 87 ADF System					
A6	Bendix-King Honeywell KN 63 DME System					
A7	KCS 55A Compass System					
A8	Garmin GNS-530W Gps/VHF Comm/Nav					
A9	Garmin GTX 330 Mode S Transponder					
A10	Garmin GMA 347 Audio Panel					
A11	Becker BXP 6401-2-(01) Mode S transponder					
A12	S-TEC Fifty Five X Auto- pilot					
A13B	GTN 650 equipment					
A14	Engine starting battery					
A15	Power supply from built- in generators					
A16	AFM Supplement for CIS countries operators					
A17	Brazilian AFMS					

EXTECNAM P2006T - Aircraft Flight Manual

Aircraft S/N:Registration marks:Date:						
SUPPLEMENTS LIST FOR AIRPLANES WITH ANALOGUE INSTRUMENTS						
Sup No	Title	D		Date	APPLI	CABLE:
Sup. No.	The	Rev. no.	Date	YES	NO	
A18	Chinese AFMS					
A19	Increased MTOW - 1230 KG (MOD 2006/015)					
A20	Increased Vle/Vlo					
A21	South African AFM					
A22	Argentine AFM					
A23	Ukrainian AFM					
A24	SMP for Analogic Con- figuration					
A25	Alternators with 70A					
A26	Mogas MG95 IS 2796:2008					
A27	Cancelled					

INTENTIONALLY LEFT BLANK

Aircraft S/N: Registration marks:				Date:		
SUPPL	SUPPLEMENTS LIST FOR AIRPLANES WITH GARMIN G950 AND G1000 NXI					
Sup. No.	Title	Rev. no.	Date	APPLICABLE:		
Sup. 110.		1	Dutt	YES	NO	
G1	Garmin G950 IFDS					
G2	S-TEC Fifty Five X Auto- pilot for GARMIN G950					
G3	Bendix-King Honeywell KR 87 ADF System for GARMIN G950					
G4	Bendix-King Honeywell KN 63 DME System for GARMIN G950					
G5	Engine starting battery					
G6	Power supply from built-in generators					
G7	AFM Supplement for CIS countries operators					
G8	Brazilian AFMS					
G9	Chinese AFMS					
G10	Increased MTOW - 1230 KG (MOD 2006/015)					
G11	Increased Vle/Vlo					
G12	South African AFM					
G13	Alternators with 70A					
G14	SMP for Digital Configu- ration					
G15	- Reserved -					
G16	MD302 Alternative Stand- By Instrument					
G17	Stormscope					
G18	Cancelled					

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

Page	9-8
1 age	7-0

G19	G1000 NXi, Increased MTOW, Increased VLE/VLO and MD302		
G20	GARMIN GTX345R Transponder		
G21	Becker 3500 ADF for GARMIN NXi		
G22	GARMIN GTS800 TAS for GARMIN NXi		

SUPPLEMENT NO. G1 – GARMIN G950 IFDS

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval or Under DOA	
Λυ	page	Revision	DO	OoA	HDO	Privileges	
0	-	See Note (*)					
1	S4-3,4	Amend General rec- ommendation	D. Ronca	C. Caruso	M. Oliva		
	S4-23,24	Update procedures	D. Ronca	C. Caruso	M. Oliva	Approved under the	
2	S4-1 and S4-31 thru 38	RNAV capabilities	A. Sabino	C. Caruso	M. Oliva	authority of DOA, ref. EASA.21J.335	
3	S4-3,13,20, 21,23,24,26,29	Amended procedures	A. Sabino	C. Caruso	M. Oliva		

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10029633 (dated 8 April 2010)

LOEP

	Pages	Revision
Cavan nagas	G1-3 thru 16	Rev 0
Cover pages	G1-1 and 2	Rev 3
Section S2	7,8, 13,14,21,22,29,30	Rev 0
Section S3	1 thru 62	Rev 0
	2, 5 thru 12, 14 thru 19, 22, 25 thru 28, 30	Rev 0
Section S4	4	Rev 1
	1, 31 thru 38	Rev 2
	3,13,20,21,23,24,29	Rev 3
Section S7 37 thru 46		Rev 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002).

The information contained herein supplements or supersedes the basic Aircraft Flight Manual: detailed instructions are provided to allow the owner for replacing the AFM pages containing information amended as per the Design Change in subject.

It is the owner's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

Supplement G1: pages replacement instructions

SECTION 1 - GENERAL

See Basic AFM - Section 1

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G1 – GARMIN G950 IFDS Supplement G1: pages replacement instructions

SECTION 2 - LIMITATIONS

Supplement G1 – LIMITATIONS page		Basic AFM Section 2 page
S2-7	REPLACES	2-7
S2-8	REPLACES	2-8
S2-13	REPLACES	2-13
S2-14	REPLACES	2-14
S2-21	REPLACES	2-21
S2-22	REPLACES	2-22
S2-29	REPLACES	2-29
S2-30	REPLACES	2-30

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G1 – GARMIN G950 IFDS

3 Airspeed indicator markings

The Airspeed Indicator displays airspeed on a rolling number gauge using a moving tape.

The airspeed is displayed inside the black pointer. The pointer remains black until reaching never-exceed speed (V_{NE}), at which point it turns red.

Airspeed indicator markings and their colour code are explained in the following table.

MARKING	KIAS	EXPLANATION
White band	53-93	Lower limit is V_{SO} , upper limit is the maximum allowable speed with flaps extended in <i>FULL</i> position.
Red line	62	Minimum aircraft control speed with one en- gine inoperative and flaps set to T.O.
Green band	66-135	Normal aircraft operating range (lower limit is V_{S1} , stall speed in "clean" configuration, and upper limit is the maximum structural cruise speed V_{NO}).
Blue line	80	Best rate-of-climb speed with one engine in- operative.
Yellow band	135-167	Speed range where manoeuvres must be con- ducted with caution and only in smooth air.
Red line	167	Maximum speed for all operations.

COSTRUZIONI AFRONAUTICHE P2006T - Aircraft Flight Manual Page S2 - 8

INTENTIONALLY LEFT IN BLANK

P2006T - Aircraft Flight Manual

13 Warning/caution alerts and safe operating annunciations

Following table addresses the warning and caution alerts and safe operating annunciations shown (unless differently specified) on the Annunciation Window:

Warning alert (RED)	Cause
L BUS VOLT HIGH	LH electric system overvoltage
R BUS VOLT HIGH	RH electric system overvoltage
L COOLANT LOW	Left engine - coolant liquid low level
L COOLANT LOW	Right engine - coolant liquid low level
PILOT DR OPEN	Main door open and/or unlocked
REAR DR OPEN	Rear door open and/or unlocked
LH ENGINE FIRE	Left engine compartment: fire detected
RH ENGINE FIRE	Right engine compartment: fire detected
LG TRANSITION (warning light installed near the landing gear control lever)	One or more legs are in transition phase and/or the selected retracted/extended position is not yet reached.
Caution alert (AMBER)	Cause
L ALT FAIL	LH generator failure
R ALT FAIL	RH generator failure
PITOT HEAT	Pitot heating system failure/not activated
EXT POWER ON	External electrical supply connected
GEAR PUMP ON	LG pump electrically supplied
Safe operating annunciation (GREEN)	Indication
L FUEL PUMP ON	Left engine - electrical fuel pump ON
R FUEL PUMP ON	Right engine - electrical fuel pump ON
PITOT HEAT ON	Pitot heating system ON
LG Down & Locked (3 advisory lights, one for each leg, in- stalled near the landing gear control lever)	Landing gear extended and locked

EASA Approved

GARMIN G950 IFDS - Supplement

EXTECNAM P2006T - Aircraft Flight Manual

Aural means are provided by Garmin G950 System: a repeating tone is associated to the warning alerts and a single chime is associated to the caution alerts. Safe operating annunciations do not have any aural chime generated.

Make reference to Garmin G950 Pilot's Guide for P2006T, last issue, "Annunciations and alerts" (Appendix A).

Section 2 – Limitations

4th Edition, Rev. 0

WARNING/CAUTION ALERTS AND SAFE OPERATING ANNUNCIATIONS

21. LIMITATIONS PLACARDS

Hereinafter the placards, related to the operating limitations and installed on *P2006T*, are reported.

21.1. SPEED LIMITATIONS

On the left side instrument panel, the following placards reporting the speed limitations are placed:

> Operating Manoeuvring speed Vo = 118KIAS

> Maximum L.G. op. speed V_{LO} / V_{LE} = 93KIAS

21.2. OPERATING LIMITATIONS

On the instrument panel, it is placed the following placard reminding the observance of aircraft operating limitations; make reference to Para. 22 for the list of equipment required on board to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

> This A/C can be operated only in normal category DAY-NIGHT-VFR-IFR (with required equipment) in non-icing conditions. All aerobatics manoeuvres including spinning are prohibited. For operational limitations refer to FLIGHT MANUAL

22. KINDS OF OPERATIONS EQUIPMENT LIST

This paragraph reports the KOEL table, concerning the equipment list required on board under CS-23 regulations to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

Flight in VFR Day and Night, IFR Day and Night is permitted only if the prescribed equipment is installed and operational.

Additional equipment, or a different equipment list, for the intended operation may be required by national operational requirements and also depends on the route to be flown.

GARMIN G950 IFDS - Supplement

P2006T - Aircraft Flight Manual

Page S2 - 30

Equipment	VFR Day	VFR Night	IFR Day	IFR Night
Magnetic compass	•	•	•	•
GDU 1040 - Display Unit (2)	•	•	•	•
GIA 63W - Integrated Avionics Unit (2)	•	•	•	•
GDC 74A - Air Data Computer	•	•	•	•
GTP 59 - OAT sensor	•	•	•	•
GRS 77 - AHRS	•	•	•	•
GMU 44 - Magnetometer	•	•	•	•
GMA 1347 - Audio panel/Marker beacon	•	•	•	•
GTX 33 - Transponder	•	•	•	•
Standby Airspeed indicator	•	•	•	•
Standby Attitude indicator (electric)	•	•	•	•
Standby Altimeter	•	•	•	•
Pitot heating system	•	•	•	•
Clock	•	•	•	•
Breakers panels	•	•	•	•
First Aid kit	•	•	•	•
First Ald kit				-
Fire extinguisher Fire detectors (2)	•	•	•	•
	•			
Instruments lights	•	•	•	•
Position lights	•	•	•	•
Landing light	•	•	•	•
Taxi light	•	•	•	•
Strobe lights	•	•	•	•
Torch		•	•	•
Cabin light		•	•	•
Cockpit lights		•	•	•
Emergency light	•	•	•	•
Volt-Ammeter	•	•	•	•
LG position and transition lights	•	•	•	•
ELT	•	•	•	•
Alternate static source	•	•	•	•
MAP indicator (dual)	•	•	•	•
RPM indicator (2)	•	•	•	•
Oil pressure indicator (2)	•	•	•	•
Oil temperature indicator (2)	•	•	•	•
CHT (2)	•	•	•	•
Fuel pressure indicator (2)	•	•	•	•
Fuel quantity indicator (2)	•	•	•	•
Longitudinal trim indicator	•	•	•	•
Rudder trim indicator	•	•	•	•
Flaps position indicator	•	•	•	•
Stall warning system	•	•	•	•
DME			•	•
ADF			•	•
	VFR Day	VFR Night	IFR Day	IFR Night

Section 2 – Limitations

Supplement G1: pages replacement instructions

SECTION 3 - EMERGENCY PROCEDURES

Apply following page replacement procedure

Supplement G1 – EMERGENCY PROCEDURES pages replace Basic AFM Section 3 as a whole

INTENTIONALLY LEFT IN BLANK

Garmin G950 IFDS -Supplement P2006T - Aircraft Flight Manual

Page S3 - 1

SECTION 3 – EMERGENCY PROCEDURES

INDEX

1.	INTRODUCTION	. 3
1.1.	Engine failure during takeoff run	. 3
2.	Airplane alerts	. 6
2.1	Single alternator failure / overvoltage	. 7
2.2	Both alternators failure	. 8
2.3	Both alternators overvoltage	. 9
2.4		
2.5	Pitot heating system failure	11
2.6	Coolant liquid low level	12
2.7	Gear Pump failure	13
2.8	Engine fire	14
2.9	Loss of information displayed	15
2.10) Loss of airspeed information	15
2.10)Loss of attitude information	16
2.11	Loss of altitude information	16
2.12	Loss of vertical speed information	17
2.13	BLoss of heading information	17
2.14	IDisplay failure	19
3.	ENGINE SECURING	21
4.	POWERPLANT EMERGENCIES	23
4.1	Propeller overspeeding	23
4.2	CHT limit exceedance	24
4.3	Oil temperature limit exceedance	25
4.4	Oil pressure limits exceedance	26
4.5	Low fuel pressure	27
5. O	ther emergencies	29
5.1	Emergency descent	29
5.2	Total electrical failure	29
5.3	Static ports failure	30
5.4	Unintentional flight into icing conditions	31
5.5	Carburettor icing	32
5.6	Flaps control failure	33
6	ONE ENGINE INOPERATIVE PROCEDURES	
6.1		
6.2	Inflight engine restart	
6.3	U U	
6.4	Engine failure during climb	39
	Engine failure in flight	
6.6	One engine inoperative landing	41

Garmin G950 IFDS -Supplement

P2006T - Aircraft Flight Manual Page S3 - 2

7	LANDING GEAR SYSTEM FAILURES	42
7.1	Emergency landing gear extension	42
7.2	Complete Gear up or nose gear up landing	43
7.3	Partial Main LG extension	45
7.4	Failed retraction	47
7.5	Unintentional landing gear extension	47
8	SMOKE AND FIRE OCCURRENCE	49
8.1	Engine fire on the ground	49
8.2	Engine fire during takeoff run	50
8.3	Engine fire in flight	52
8.4	Electrical smoke in cabin on the ground	52
8.5	Electrical smoke in cabin during flight	53
9	UNINTENTIONAL SPIN RECOVERY	55
10	LANDING EMERGENCIES	56
10.1	Landing without engine power	56
10.2	Landing with Nose landing gear tire deflated	58
10.3	Landing with a known main landing gear tire deflated	59
10.4	Landing without brakes	60
11	AIRCRAFT EVACUATION	61
12	DITCHING	62

Garmin G950 IFDS - Supplement P2006T - Aircraft Flight Manual Page S3 - 3

1. INTRODUCTION

K TECNAM

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

Before operating the aircraft, the pilot should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self study should be done.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1. ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. Rudder

3. --

4. --

- BOTH IDLE Keep heading control
- b. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

Additionally operating the aircraft, the pilot should become thoroughly familiar with the Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - and, in particular, with the present AFM Section.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

Garmin G950 has a very high degree of functional integrity. However, the pilot must recognize that providing monitoring and/or self-test capability for all conceivable system failures is not practical. Although unlikely, it may be possible for erroneous operation to occur without a fault indication shown by the G950. It is thus the responsibility of the pilot to detect such an occurrence by means of crosschecking with all redundant or correlated information available in the cockpit.

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

- 1. Keep self-control and maintain aircraft flight attitude and parameters
- 2. Analyse the situation identifying, if required, the area for a possible emergency landing

ea where suitable repairs can be made.

- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control as applicable

For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

In this Chapter, following definitions apply: Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured. Land as soon as practical: land at the nearest approved landing ar-

ECNAM P2006T - Aircraft Flight Manual Page S3 - 5

INTENTIONALLY LEFT BLANK

Section 3 – Emergency procedures

P2006T - Aircraft Flight Manual Page S3 - 6

2. AIRPLANE ALERTS

K TECNAM

Annunciation Window, located to the right of the Altimeter and Vertical Speed Indicator, supplies 16 alerts for warnings and cautions along with safe operating annunciations. The colours are as follows:

GREEN:	to indicate that pertinent device is turned ON
AMBER:	to indicate no-hazard situations which have to be considered and
	which require a proper crew action
<u>RED:</u>	to indicate emergency conditions

Warning alert text is shown in red in the Annunciation Window and is accompanied by a continuous chime and a flashing WARNING Softkey annunciation. Selecting the WARNING Softkey acknowledges the presence of the warning alert and stops the aural chime.

Caution alert text is shown in yellow in the Annunciation Window and is accompanied by a single chime and a flashing CAUTION Softkey annunciation. Selecting the CAUTION Softkey acknowledges the presence of the caution alert. Caution voice alerts repeat three times or until acknowledged by selecting the CAUTION Softkey.

All aircraft annunciations can be displayed simultaneously in the Annunciation Window. A white horizontal line separates annunciations that are acknowledged from annunciations that are not yet acknowledged. Higher priority annunciations are displayed towards the top of the window.

In order to give a short description about the airplane alerts, text messages are displayed on the Alerts Window: pressing the ALERTS Softkey displays the Alerts Window, pressing the ALERTS Softkey a second time removes the Alerts Window from the display. When the Alerts Window is displayed, the FMS knob can be used to scroll through the alert message list.

Garmin G950 IFDS - Supplement P2006T - Aircraft Flight Manual

2.1 SINGLE ALTERNATOR FAILURE / OVERVOLTAGE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
OR	R
R ALT FAIL	Rh Alternator
1. FIELD LH (or RH)	OFF
2. FIELD LH (or RH)	ON
If the LH (or RH) ALT c	caution stays displayed
<i>3.</i> FIELD LH (or RH)	OFF
4. Avionic LH	OFF
5. ADF	OFF

The battery and a single generator are able to supply the electrical power necessary for flight, but redundancy is lost.

If conditions permit:

NOTE

Switching CROSS BUS OFF will further reduce alternator load; the decision mainly depends on weather conditions.

6. CROSS BUS LH (or RH)

OFF

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

* AHRS /ADC are fed from battery bus if Mod 2006/135 is embodied

7. Land as soon as practicable

4th Edition, Rev. 0

Section 3 – Emergency procedures

Single alternator failure / overvoltage

Garmin G950 IFDS -Supplement P2006T - Aircraft Flight Manual

2.2 BOTH ALTERNATORS FAILURE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
R ALT FAIL	Rh Alternator

In event of both L and R ALT FAIL caution alerts displayed:

1.	FIELD LH and RH	BOTH OFF
2.	FIELD LH and RH	BOTH ON

If the LH (or RH) ALT caution stays displayed

- 1. Verify good ammeter indications on restored alternator
- 2. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH ALT cautions stay displayed

3.	FIELD LH and RH	BOTH OFF
4.	CROSS BUS LH and RH	BOTH OFF

If engine starting battery modification is applied

5. EMERG BATT switch

ON

6. Land as soon as possible.

NOTE

If engine starting battery modification is not applied 5. Land as soon as possible.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

AHRS /ADC are fed from battery bus if Mod 2006/135 is embodied

The battery can supply electrical power for at least 30 minutes.

P2006T - Aircraft Flight Manual

2.3 BOTH ALTERNATORS OVERVOLTAGE

Annunciation window	Alert window	
L BUS VOLT HIGH	Lh overvoltage	
R BUS VOLT HIGH	Rh overvoltage	

In event of both L and R BUS VOLT HIGH warning alerts displayed:

- 1. FIELD LH and RH
- 2. FIELD LH and RH

C TECNAM

BOTH ON (one at a time)

BOTH OFF

ON

If the LH (or RH) BUS VOLT HIGH warning is still displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning are still displayed

BOTH OFF

BOTH OFF

BOTH OFF

BOTH ON (one at a time)

- 3. CROSS BUS LH and RH
- 4. FIELD LH and RH
- 5. FIELD LH and RH

If LH (or RH) BUS VOLT HIGH warning is still displayed

- 6. Verify good ammeter indications on restored alternator
- 7. Switch CROSS BUS on the restored alternator side
- 8. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning are still displayed

6. FIELD LH and RH

If engine starting battery modification is applied

- 7. EMERG BATT switch
- 8. Land as soon as possible.

If engine starting battery modification is not applied

7. Land as soon as possible

NOTE

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

AHRS /ADC are fed from battery bus if Mod 2006/135 is embodied

The battery can supply electrical power for at least 30 minutes.

4th Edition, Rev. 0

Section 3 – Emergency procedures

Both alternators failure

Page S3 - 9

P2006T - Aircraft Flight Manual Page S3 - 10

2.4 FAILED DOOR CLOSURE

TECNAM

Annunciation window	Alert window	
PILOT DR OPEN	Main door open	
OR		
REAR DR OPEN	Rear door open	

In case of door opening / unlocking, related PILOT or REAR DR OPEN alert is displayed. In this case, apply following procedure:

ON THE GROUND

<u>If door is open</u>

1. Passengers and crew seat beltsFasten and tighten2. Affected doorVerify correctly closed

3. Relevant engine

4. Affected door

Close and check

Shut down

3. Locking device

Check

If down in unlocked position

If door is closed

4. Abort mission.

IN FLIGHT

Passengers and crew seat belts
 Affected door and locked device
 Fasten and tighten Verify correctly closed

If door is open or locking device is unlocked

3. Land as soon as possible

4th Edition, Rev. 0

Section 3 – Emergency procedures

2.5 PITOT HEATING SYSTEM FAILURE

Annunciation window	Alert window
PITOT HEAT ON	Pitot heat
PITOT HEAT	Pitot heat

When the Pitot Heating system is activated, the green PITOT HEAT advisory light is turned ON.

If the amber PITOT HEAT caution light turns OFF, then the Pitot Heating system is functioning properly. Anytime the amber PITOT HEAT caution light is ON at the same time the green PITOT HEAT light is ON, then the Pitot Heating system is not functioning properly.

1. Pitot heat switch OFF

2. Verify Pitot Heating circuit breaker is IN

- 3. Pitot heat switch ON
- 4. Check PITOT HEAT caution light:

If the amber light stays ON, assume a failure in the pitot heating system. Avoid visible moisture and OATs below 10 deg C.

Section 3 – Emergency procedures

2.6 COOLANT LIQUID LOW LEVEL

When the engine coolant liquid level goes under the lower limit, the related L or R COOLANT LOW warning alert is displayed. Low coolant level condition may lead to high CHT/CT. When the warning is displayed, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- 3. Land as soon as practical

If CH/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 4)
- **5.** Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

Section 3 – Emergency procedures

P2006T - Aircraft Flight Manual Page S3 - 13

2.7 GEAR PUMP FAILURE

K TECNAM

Annunciation window	Alert window
GEAR PUMP ON	Gear powered

The GEAR PUMP ON caution light turns ON when the landing gear hydraulic pump is electrically supplied.

After the landing gear retraction, if the red TRANS light turns OFF and the GEAR PUMP ON caution stays turned ON, this could indicate a gear pump relay failure to ON.

If TRANS light is OFF

1. Continue the mission monitoring the caution light.

If TRANS light is ON

2. Landing gear is not locked in UP position

NOTE

The electrical gear pump, continuously supplied, causes a current absorption which does not affect the mission unless this failure is coupled with the overall electrical failure. In this case, the residual battery endurance may be consistently lower than 30 minutes.

Section 3 – Emergency procedures

Garmin G950 IFDS -Supplement

P2006T - Aircraft Flight Manual

2.8 ENGINE FIRE

TECNAM

In event of engine fire, the LH or RH ENGINE FIRE warning alert is displayed. Refer to following procedures:

FIRE ON THE GROUND:	see Para. 8.1
FIRE DURING TAKEOFF RUN:	see Para. 8.2
FIRE IN FLIGHT:	see Para. 8.3

Page S3 - 14

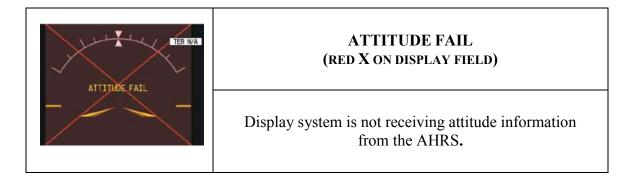
NOTE

2.9 LOSS OF INFORMATION DISPLAYED

When a LRU or a LRU function fails, a large red 'X' is typically displayed on the display field associated with the failed data.

In most of cases, the red "X" annunciation is accompanied by a message advisory alert issuing a flashing ADVISORY Softkey annunciation which, once selected, acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window. Refer to G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00), last issue, Appendix A, Message Advisories list.

2.10 LOSS OF AIRSPEED INFORMATION


A TR SA H	AIRSPEED FAIL (red X on display field)
	Display system is not receiving airspeed input from the Air Data Computer.

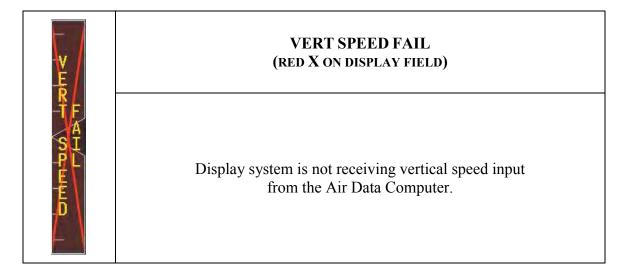
INSTRUCTION: revert to standby analogical airspeed indicator

Garmin G950 IFDS - Supplement P2006T - Aircraft Flight Manual

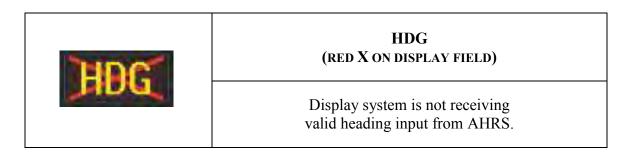
2.10 LOSS OF ATTITUDE INFORMATION

INSTRUCTION: revert to standby analogical attitude indicator

2.11 LOSS OF ALTITUDE INFORMATION


ALTITUDE FAIL (red X on display field)
Display system is not receiving altitude input from the Air Data Computer.

INSTRUCTION: revert to standby analogical altitude indicator


P2006T - Aircraft Flight Manual

2.12 LOSS OF VERTICAL SPEED INFORMATION

INSTRUCTION: determine vertical speed on the basis of altitude information

2.13 Loss of heading information

INSTRUCTION: revert to magnetic compass

P2006T - Aircraft Flight Manual Page S3 - 18

INTENTIONALLY LEFT BLANK

Section 3 – Emergency procedures G950 SYSTEM FAILURES

2.14 DISPLAY FAILURE

In the event of a display failure, the G950 System automatically switches to reversionary (backup) mode. In reversionary mode, all important flight information is presented on the remaining display in the same format as in normal operating mode. The change to backup paths is completely automated for all LRUs and no pilot action is required.

if the system fails to detect a display problem

1. DISPLAY BACKUP button

PUSH

If a display fails, the related Integrated Avionics Unit (IAU) is cut off and can no longer communicate with the remaining display: consequently the NAV and COM functions provided to the failed display by the Integrated Avionics Unit are flagged as invalid on the remaining display.

ECNAM P2006T - Aircraft Flight Manual Page S3 - 20

INTENTIONALLY LEFT BLANK

Section 3 – Emergency procedures G950 SYSTEM FAILURES

Garmin G950 IFDS -Supplement

P2006T - Aircraft Flight Manual

3. ENGINE SECURING Following procedure is applicable to shut-down one engine in flight: 1. Throttle Lever IDLE 2. Ignition BOTH OFF 3. Propeller Lever FEATHER 4. Fuel Selector OFF 5. Electrical fuel pump OFF

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT:	see Para. 6.5
SINGLE GENERATOR FAILURE:	see Para. 2.1
or BOTH GENERATOR FAILURE:	see Para. 2.2
INFLIGHT ENGINE RESTART:	see Para. 6.2
ONE ENGINE INOPERATIVE LANDING:	see Para. 6.6
or LANDING WITHOUT ENGINE POWER:	see Para. 10.1

ECNAM P2006T - Aircraft Flight Manual Page S3 - 22

INTENTIONALLY LEFT BLANK

TECNAM

4. POWERPLANT EMERGENCIES

4.1 **PROPELLER OVERSPEEDING**

The aircraft is fitted with propeller/governor set by MT-Propeller such a way that the maximum propeller rpm exceedance is prevented. In case of propeller overspeeding in flight, apply following procedure:

- 1. Throttle Lever
- 2. Propeller Lever
- 3. RPM indicator

REDUCE power to minimum practical REDUCE as practical (*not in feathering*) *CHECK*

If it is not possible to decrease propeller rpm, apply *engine securing procedure* (see Para. 3) and **land as soon as possible a**pplying *one engine inoperative land-ing* procedure (See Para. 6.6).

Maximum propeller rpm exceedance may cause the engine components damage. Propeller and engine shall be inspected in accordance with related Operators Manuals. Garmin G950 IFDS -Supplement

P2006T - Aircraft Flight Manual Page S3 - 24

4.2 CHT LIMIT EXCEEDANCE

If CHT/CT exceeds its limit, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- 3. Land as soon as practical

If CHT/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 3)
- **5.** Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

Garmin G950 IFDS -Supplement

4.3 OIL TEMPERATURE LIMIT EXCEEDANCE

If oil temperature exceeds maximum limit (130°C):

1. OIL PRESS CHECK

If oil pressure is within limits

Affected engine
 Affected engine
 Reduce power setting to minimum applicable
 Keep propeller speed higher than 2000 RPM

INCREASE

If oil pressure does not decrease

4. Airspeed

NOTE

If oil temperature does not come back within limits, the thermostatic valve, regulating the oil flow to the heat exchangers, could be damaged or an oil leakage can be present in the oil supply line.

- 5. Land as soon as practical keeping the affected engine to the minimum necessary power
- 6. Monitor OIL PRESS and CHT/CT

if engine roughness / vibrations or erratic behaviour is detected:

- 7. Affected engine SECURE (engine securing procedure on Para. 3)
- 8. Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

P2006T - Aircraft Flight Manual Page S3 - 26

4.4 OIL PRESSURE LIMITS EXCEEDANCE

If oil pressure exceeds its lower or upper limit (0.8 - 7 bar), apply following procedure:

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

An excessive oil pressure value can be counteracted by decreasing propeller rpm.

1. OIL PRESS

3. Propeller Lever

CHECK

If oil pressure exceeds upper limit (7 bar)

- 2. Throttle Lever *firs*
 - first REDUCE affected engine power by 10%
 - Keep low rpm
- 4. OIL PRESS CHECK (verify if came back within the limits)
- 5. Land as soon as practical

If oil pressure is under the lower limit (0.8 bar)

2. Land as soon as practical

If oil pressure is continuously decreasing

- 3. Affected engine SECURE (see engine securing procedure on Para. 3)
- 4. Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

4.5 LOW FUEL PRESSURE

TECNAM

If fuel pressure decreases below the lower limit (2.2 psi), apply following procedure:

1.	Fuel press	CHECK
2.	Fuel quantity	CHECK
3.	Fuel consumption	MONITOR

If a fuel leakage is deemed likely

5. Land as soon as possible.

If a fuel leakage can be excluded:

- 4. Electrical fuel pump ON
- 5. Feed the affected engine by means of opposite side fuel tank

If pressure does not come back within the limits

6. Land as soon as practical

ECNAM P2006T - Aircraft Flight Manual Page S3 - 28

INTENTIONALLY LEFT BLANK

5. OTHER EMERGENCIES

K TECNAM

5.1 EMERGENCY DESCENT

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15°.

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

OFF

ON

BOTH OFF

BOTH ON

1.	Power levers	IDLE
2.	Flaps	$U\!P$
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLE

5.2 TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON if necessary
1.		01, 9, 100005501. 9

2	MASTER SWITCH	
4.		

- 3. FIELD LH and RH
- 4. MASTER SWITCH
- 5. FIELD LH and RH

<u>If failure persists</u>

9. EMERG BATT switch

ON (if engine starting battery installed)

10. Land as soon as possible applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

5.3 STATIC PORTS FAILURE

In case of static ports failure, the alternate static port in the cabin (shown below) must be activated.

1. Cabin ventilation

2. ALTERNATE STATIC PORT VALVE

3. Continue the mission

OFF (hot and cold air) OPEN

Garmin G950 IFDS -Supplement P2006T - Aircraft Flight Manual

5.4 UNINTENTIONAL FLIGHT INTO ICING CONDITIONS

1. Carburettor heat

BOTH ON ON

- 2. Pitot heat
- 3. Fly as soon as practical toward a zone clear of visible moisture, precipitation and with higher temperature, changing altitude and/or direction.
- 4. Control surfaces *Move continuously to avoid locking*
- 5. Propellers rpm INCREASE to prevent ice build-up on the blades

In event of ice build-up in correspondence of wing leading edges, stall speed increases.

Ice build-up on wing, tail fin or flight control surfaces unexpected sudden roll and/or pitch tendencies can be experienced and may lead to unusual attitude and loss of aircraft control.

Do not use Autopilot when icing formation is suspected or detected.

5.5 CARBURETTOR ICING

DURING TAKEOFF

The carburettor icing in "full throttle" mode is unlikely.

Take off in known or suspected icing formation is forbidden; in order to dispose of full engine take off power, take-off must be performed with carburettor heating OFF.

IN FLIGHT

Carburettor icing is considered probable when external air temperature is below 15° C and visible air moisture (clouds, mist, haze or fog) or atmospheric precipitation are present.

Generally, an OAT-to-dew point temperature spread lower than 10°C and OAT less than 15°C with visibility lower than 5 km is a positive indication of likely icing formation condition.

Should an inadvertent flight into known or forecast icing condition happen carburettor heating should be selected "ON" as soon as possible: the greater the advance carburettors are warmed the better the chances not to form ice and avoid engine power loss or reduction.

Keep Carb Heating "ON" until engine power is restored and area of possible icing condition is exited.

Carburettor Heating selected to "ON" will cause engine RPM reduction of about 100 RPM causing a sensible available engine power decrease.

5.6 FLAPS CONTROL FAILURE

DURING TAKEOFF

Flap UP take off, requires a T/O distance (50 ft height obstacle distance) increased by about 20%.

1. Airspeed

Keep below 93 KIAS

2. Land as soon as practical

DURING APPROACH/LANDING

If the flaps control fails, consider the higher stall speed (see Section 5, Para. 6, "Stall Speed") and an increased landing distance of about 25%.

- 1. Airspeed
- Keep over 75 KIAS
- 2. Land as soon as practical on a runway of appropriate length

6 ONE ENGINE INOPERATIVE PROCEDURES

The ineffectiveness of one engine results in asymmetric traction which tends to yaw and bank the aircraft towards the inoperative engine. In this condition it is essential to maintain the direction of flight compensating the lower traction and counteracting the yawing effects by mean of rudder pedals. To improve directional control, it is advisable to bank the aircraft of about 5° to the side of the operating engine.

In addition, reduced available overall power and extended control surfaces will lead to a performances drop: a quick pitch attitude reduction will allow to keep a minimum safety airspeed.

The higher is the airspeed the better will be lateral and directional control efficiency: never allow airspeed to drop below V_{MCA} .

Best residual climb performances in OEI (One Engine Inoperative) condition have been recorded in Flap Up configuration and at V_{YSE} , which is marked as a Blue Line on the Airspeed indicator (calculated for maximum Take Off Weight and Sea, Level ISA condition) For actual condition V_{YSE} refer to Section 5 Para. 13, "One engine rate of climb".

 V_{XSE} is actually very close to V_{YSE} in any condition, thus best climb performance will also be associated with best climb angle (gradient) performance. Refer to Section 5 Para. 14, One-Engine Rate of Climb at V_{xSE} , for relevant data.

CAUTION

P2006T - Aircraft Flight Manual Page S3 - 35

6.1 CHARACTERISTIC AIRSPEEDS WITH ONE ENGINE INOPERATIVE

In case of one engine inoperative condition (OEI), pilot shall take into account the airspeeds shown below:

Conditions	Speed (KIAS)	
Minimum aircraft control speed with one engine inoperative and flaps set to T.O. (V_{MC})	62	
at rate of alight around $OEL(V_{ij})$	MTOW 1180 kg	MTOW 1230 kg
Best rate-of-climb speed OEI (V_{YSE})	80	84
Best gradient speed OEI (V _{XSE})	79	83

Reference is made to MTOW, 1180 kg and 1230 kg, at Sea Level and ISA condition (if Supplement G10- Increased MTOW @1230 KG - is applicable).

Page S3 - 36

6.2 INFLIGHT ENGINE RESTART

After:

- mechanical engine seizure;
- fire;

- major propeller damage

engine restart is not recommended.

- 1. Carburettor heat
- 2. Electrical fuel pump
- 3. Fuel quantity indicator
- 4. Fuel Selector
- 5. FIELD
- 6. Ignition
- 7. Operating engine Throttle Lever
- 8. Stopped engine Throttle Lever
- 9. Stopped engine Propeller Lever
- 10. Start push-button
- 11. Propeller Lever
- 12. FIELD
- 13. Engine throttle levers

ON CHECK CHECK (Crossfeed if required) OFF BOTH ON SET as practical IDLE FULL FORWARD PUSH SET at desired rpm ON (check for positive ammeter) SET as required

ON if required

If engine restart is unsuccessful

14. EMERG BATT switch

ON (if starting battery installed)

15. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

16. Affected engine

SECURE (see engine securing procedure Para. 3)

17. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

6.3 ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. Rudder
- 3. Brakes

BOTH IDLE Keep heading control As required

When safely stopped:

- 4. Failed Engine Ignition
- 5. Failed Engine Field

BOTH OFF OFF OFF

6. Failed Engine Electrical fuel pump

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

- 1. **Operating engine Throttle Lever**
- 2. Operating engine Propeller Lever
- 3. Heading
- 4. Attitude
- 5. Inoperative engine Propeller Lever
- 6. Landing gear control lever
- 7. Airspeed
- 8. Flaps

FULL POWER FULL FORWARD Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS FEATHER UP V_{XSE}/V_{YSE} as required 0•

ECNAM P2006T - Aircraft Flight Manual Page S3 - 38

<u>At safe altitude</u>

- 9. <u>Inoperative engine</u>
- 10. Operative engine Electrical fuel pump Check ON
- 11. Operating engine
- 12. Operating engine Fuel Selector

Confirm and SECURE Check ON Check engine instruments Check correct feeding (crossfeed if needed)

If engine restart is recommended:

13. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

13. Land as soon as possible

14. One engine inoperative landing procedure. see Para. 6.6

Following:

- mechanical engine seizure;
- fire;
- major propeller damage

engine restart is not recommended.

P2006T - Aircraft Flight Manual Page S3 - 39

6.4 ENGINE FAILURE DURING CLIMB

- 1. Autopilot
- 2. Heading
- 3. Attitude

OFF

Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS

- 4. Operating engine Throttle Lever
- 5. Operating engine Propeller Lever
- 6. Operative engine Electrical fuel pump
- 7. <u>Inoperative engine</u> Propeller Lever
- 8. <u>Inoperative engine</u>

FULL THROTTLE FULL FORWARD Check ON FEATHER Confirm and SECURE

If engine restart is possible:

9. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- 9. Land as soon as possible
- 10. One engine inoperative landing procedure. see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

P2006T - Aircraft Flight Manual Page S3 - 40

6.5 ENGINE FAILURE IN FLIGHT

- 1. Autopilot
- 2. Heading
- 3. Attitude

Keep control using rudder and ailerons Adjust as appropriate to keep airspeed over 62 KIAS

- 4. Operating engine
- 5. Operative engine Electrical fuel pump
- 6. Operating engine Fuel Selector

Monitor engine instruments Check ON Check correct feeding (crossfeed if needed)

If engine restart is possible:

7. Apply INFLIGHT ENGINE RESTART procedure *see Para 6.2*

OFF

If engine restart is unsuccessful or it is not recommended:

- 8. Land as soon as possible
- 9. One engine inoperative landing procedure. *see Para. 6.6*

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12. Rate of climb with One Engine Inoperative.