



# Pilot's Operating Handbook

1<sup>st</sup> Edition 18<sup>th</sup> December 2013 - Rev. 1

Publication N°: 09 19

MANUFACTURER:

COSTRUZIONI AERONAUTICHE **TECNAM** S.r.l. Via Maiorise - 81043 Capua (CE) - Italy

AIRCRAFT MODEL: Tecnam Astore

ENGINE: ROTAX 912iS2

| SERIAL NUMBER:                |
|-------------------------------|
|                               |
| BUILD YEAR:                   |
|                               |
| AIRPLANE REGISTRATION NUMBER: |
| AIRPLANE REGISTRATION NUMBER  |

This Manual must be carried in the airplane at all times.

The airplane has to be operated in compliance with procedures and limitations contained herein.





### Record of revisions

Any revision to the present Manual, except actual weighing data, is recorded: a Record of Revisions is provided at the front of this manual and the operator is advised to make sure that the record is kept up-to-date.

The Manual issue is identified by Edition and Revision codes reported on each page, higher right side.

The revision code is numerical and consists of the number "0"; subsequent revisions are identified by the change of the code from "0" to "1" for the first revision to the basic publication, "2" for the second one, etc.

Should be necessary to completely reissue a publication for contents and format changes, the Edition code will change to the next number ("2" for the second edition, "3" for the third edition etc).

Additions, deletions and revisions to existing text will be identified by a revision bar (black line) in the left-hand margin of the page, adjacent to the change.

When technical changes cause expansion or deletion of text which results in unchanged text appearing on a different page, a revision bar will be placed in the right-hand margin adjacent to the page number of all affected pages providing no other revision bar appears on the page.

These pages will be updated to the current regular revision date.

**NOTE**: It is the responsibility of the owner to maintain this handbook in a current status when it is being used for operational purposes.





| Rev | Revised page | Description of<br>Revision                            |
|-----|--------------|-------------------------------------------------------|
| 0   | -            | First issue                                           |
| 01  | 10-13        | LND light breaker rating typing error corrected to 3A |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |
|     |              |                                                       |

#### INTENTIONALLY LEFT BLANK





## List of effective pages

The List of Effective Pages (LOEP), applicable to manuals of every operator, lists all the basic AFM pages: each manual could contain either basic pages or one variant of these pages when the pages of some Supplements are embodied.

Pages affected by the current revision are indicated by an asterisk (\*) following the revision code.

1st Edition, Rev 0 ...... Jan, 14<sup>th</sup> 2014 1st Edition, Rev 1 ...... Mar, 25<sup>th</sup> 2014

| Section                                                         | Pages           | Revision |
|-----------------------------------------------------------------|-----------------|----------|
| Section 1                                                       | Pages 1 thru 23 | Rev 0    |
| Section 2                                                       | Pages 1 thru 7  | Rev 0    |
| Section 3                                                       | Pages 1 thru 21 | Rev 0    |
| Section 4                                                       | Pages 1 thru 19 | Rev 0    |
| Section 5                                                       | Pages 1 thru 15 | Rev 0    |
| Section 6                                                       | Pages 1 thru 15 | Rev 0    |
| Section 7                                                       | Pages 1 thru 9  | Rev 0    |
| Section 8                                                       | Pages 1 thru 11 | Rev 0    |
| Supplements [Section 9]                                         |                 |          |
|                                                                 |                 |          |
| Supplements LOEP: make reference to the Supplements Cover Pages |                 |          |
| Section 10                                                      | Pages 1 thru 16 | Rev 1    |

### INTENTIONALLY LEFT BLANK



Ed.1 Rev.1

## **Sections List**

According with the applicable ASTM, this manual is composed by the following sections:

| General Information                | Section 1  |
|------------------------------------|------------|
| Limitations                        | Section 2  |
| <b>Emergency Procedures</b>        | Section 3  |
| Normal Procedures                  | Section 4  |
| Performances                       | Section 5  |
| Weight and Balance, Equipment List | Section 6  |
| Airframe and Systems description   | Section 7  |
| Handling and Servicing             | Section 8  |
| Supplements                        | Section 9  |
| Marking and Placards               | Section 10 |





### Introduction

The Tecnam Astore is a low wing, two-place, single-engine airplane equipped with tricycle landing gear. It is made entirely in metal with fairings and upper radome in carbon/glass fibers with epoxy matrix. Astore is designed to be flown by sport pilot rated pilots as well as higher rated pilots (refer to the latest requirements in terms of licenses and medical clearance).

This aircraft is designed and built in Italy at Tecnam plant in Capua.



www.tecnam.com

This Flight Manual has been prepared in compliance with all the applicable ASTM standards to provide pilots and instructors with information for the safe and efficient operation of this aircraft.







## **Applicable standards**

The following shows the standards used to design and build the aircraft. Also, the reference to the Continued Airworthiness standard used is shown.

| Design and Performance                                                                                            | F2245-12d |
|-------------------------------------------------------------------------------------------------------------------|-----------|
| Required Equipment                                                                                                | F2279-06  |
| Quality Assurance                                                                                                 | F2279-06  |
| Production Acceptance Tests                                                                                       | F2279-06  |
| Aircraft Operating Instructions                                                                                   | F2245-12d |
| Maintenance and Inspection Procedures                                                                             | F2483-12  |
| Identification and Recording of Major Repairs and Major Alterations                                               | F2483-12  |
| Continued Airworthiness                                                                                           | F2295-06  |
| Required Product Information                                                                                      | F2745-11  |
| Pilot's Operating Handbook (POH)                                                                                  | F2746-12  |
| Airframe Emergency Parachutes*                                                                                    | F2316-12  |
| Standard Practice for Design and Manufacture of Reciprocating<br>Spark Ignition Engines for Light Sport Aircraft  | F2339-06  |
| Standard Specification for Design and Testing of Fixed-Pitch or Ground Adjustable Light Sport Aircraft Propellers | F2506-10  |

<sup>\*</sup>If applicable, see related Supplement

New revision of each standard will be carefully evaluated by Tecnam and, for each case, they could result into the revision of internal reports (so no impact on the manuals revisions) and/or could result into a revision of this POH, AMM and other customer's owned manuals.

#### 1. Section No. 1 - General Information

Thank you for being a new Tecnam Astore owner! Before your first flight with this aircraft you should carefully read this manual and be aware of all the aircraft aspects, including those regarding its correct maintenance.

Even if, in order to have a fast cross reference with the limitation placards, limitations are highlighted in this document, you should be aware that the correct use of this aircraft needs further information here following described:

#### NOTE

the complete kit of documentation of installed equipment will be supplied at date of delivery. The following information are essential to be updated constantly concerning new manual editions and continued airworthiness communications.

#### • The ENGINE manuals

These manuals are all available on FLYROTAX website in the technical support section. Tecnam strongly recommend to subscribe to the ROTAX mailing list in order to be always updated concerning the latest manuals editions/revisions, and also to be informed immediately when airworthiness affecting documents have been issued. Tecnam recommend to use the same e-mail address used to subscribe all the aircraft-related mailing lists.

The direct link to the ROTAX T-Publications page is:



http://www.flyrotax.com/customer-serviceImpressum/technical-publications.aspx

Note that all the ROTAX engines suitable for Tecnam Astore aircraft are compliant with the ASTM F2339-06.

#### • The avionics documentation

Some version of Tecnam Astore is equipped with avionics covered by respective manufacturer's documentation in terms of Operator's Manual. The brands have their own website section with all relevant manuals. Link to these sections are the following (other brands information, if applicable, are covered within the related Supplement):

| Garmin | <ul> <li>Avionic suites (EFIS/EMS);</li> <li>Autopilot;</li> <li>Radio equipment;</li> <li>Transponder;</li> <li>Audio Panels;</li> <li>GPS;</li> </ul> | http://www.garmin.com/en-US/explore/intheair/ |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Dynon  | <ul> <li>Avionic suites (EFIS/EMS);</li> <li>Autopilot;</li> <li>Engine Monitoring;</li> <li>Radio equipment;</li> <li>Transponder;</li> </ul>          | http://www.dynonavionics.com/index.html       |

Ed.1 Rev.1

### • The propeller documentation

The Astore can be equipped with three types of propellers, two ground-adjustable and one wooden made-fabric covered (standard equipment). All of three are built in USA by Sensenich. Following the P/N and factory details to the web service page.

| 3B0R5R68C   | Three blades - ground adjustable propeller with 68" diameter     |                                                |
|-------------|------------------------------------------------------------------|------------------------------------------------|
| 2A0R5R70EN  | Two blades - ground adjustable propeller with 70" diameter       |                                                |
| W68T2ET-70J | Two blades wood propeller with glass fiber wrap and 68" diameter | http://www.sensenich.c<br>om/support/documents |

#### • Tecnam Aircraft Continued Airworthiness instructions

These instructions need the registration to the mailing list Tecnam. Tecnam website is provided with a LOG IN section in which all the latest manuals revisions are available and so all the safety information, which are automatically sent also by e-mail. The following is the link to the NEW ACCOUNT registration page:



#### http://www.tecnam.com/Register-User.aspx

If you have already an user name and password, you can link directly to the LOGIN page to access the Manuals:



#### http://www.tecnam.com/Login.aspx

The links for the Tecnam support page and Service Bulletin page are following reported:



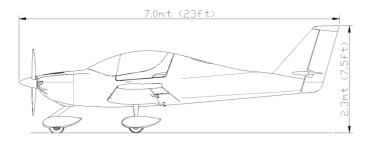


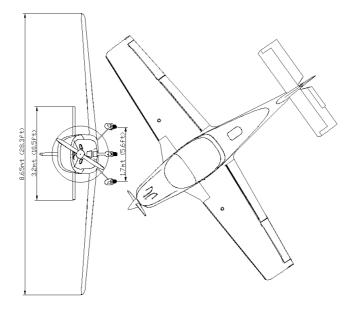
http://tecnam.com/Customer-Care/Support.aspx

http://tecnam.com/Customer-Care/Service-Bulletins.aspx

#### 1.1. Airplane description

The Tecnam Astore is a low wing, two-place, single-engine airplane equipped with tricycle landing gear. It is made entirely in metal with fairings and upper radome in carbon/glass fiber with epoxy matrix. The main landing gear is made by a couple of 7075T6 light alloy springs which are hinged inside the fuselage in order to maximize the wheel deflection and energy absorption. The springs are supported by machined components which discharge the load directly on the wing carry through and rear bulkhead. Two rawhide liners are inserted between each spring-leaf and the external machined beam. Two bolts secure the individual spring-leaf to the edge of the beam via a light alloy clamp while a single bolt secures the inboard end of the leaf-spring to the hinge and inner machined beam. The nose gear is pivoting and the energy absorption is made via an oleo-pneumatic shock absorber. It is fitted directly on the first fuselage bulkhead.


The horizontal tail is made by a stabilizer and elevator with tip balancing horns. All the control surfaces, except for the flaps and trim tab, are balanced.


In order to read more about the airframe and systems refer to the Section No.7.



### 1.2. Views and dimensions

Following the three views of the aircraft with most relevant dimensions.









### 1.3. Data and Characteristics

### 1.3.1. Dimensions and areas

| Wing Span             | 28.4 ft                   | 8.65 mt               |
|-----------------------|---------------------------|-----------------------|
| Wing Area             | 131 ft <sup>2</sup>       | 12.15 mt <sup>2</sup> |
| Aspect Ratio          | 6.2                       |                       |
| Overall length        | 23.0 ft                   | 7.0 mt                |
| Overall width (cabin) | 45.3 in                   | 1.15 mt               |
| Overall height        | 7.5 ft                    | 2.3 mt                |
| Stabilator span       | 10.5 ft                   | 3.2 mt                |
| Stabilator area       | 24.0 ft <sup>2</sup>      | 2.23 mt <sup>2</sup>  |
| Vertical tail area    | 11.5 ft <sup>2</sup>      | 1.07 mt <sup>2</sup>  |
| Wheel track           | 5.6 ft                    | 1.7 mt                |
| Wheel base            | 5.6 ft                    | 1.7 mt                |
| Main gear tire        | 5.00-5                    |                       |
|                       | Air Trac or Goodyear      |                       |
| Nose Gear tire        | 5.00-5                    |                       |
|                       | Air Trac or Goodyear      |                       |
| Wheels and brakes     | Marc-Ingegno or Cleveland |                       |





## 1.3.2. Weights and capacities

| MTOW                                               | 1320 lb       | 599 kg    |
|----------------------------------------------------|---------------|-----------|
| Ramp Weight                                        | 1324 lb       | 601 kg    |
| Maximum allowed empty weight (100 hp Rotax 912iS2) | 892 lb        | 405 kg    |
| Maximum allowed empty weight (115 hp Rotax 914)    | 885 lb        | 402 kg    |
| Maximum allowed baggage weight                     | 77 lb         | 35 kg     |
| Total usable fuel                                  | 2x14.4 US Gal | 2x54.5 lt |

### 1.3.3. Performances

| Top speed (S.L IAS)                  | 127kt  | 235km/h |
|--------------------------------------|--------|---------|
| Stall speed (S.L IAS) - clean        | 35kt   | 65km/h  |
| Stall speed (S.L IAS) - T/O          | 34kt   | 63km/h  |
| Stall speed (S.L IAS) - LDG          | 32kt   | 59km/h  |
|                                      |        |         |
| Full fuel endurance (+30' res.)      | 7h:20' |         |
| Engine rpm: 5.100                    |        |         |
| Cruise speed (TAS): 102kt            |        |         |
| Pressure Altitude: 6.000ft           |        |         |
| Rate of Climb (V <sub>x</sub> - IAS) | 57kt   | 106km/h |
| Rate of Climb (V <sub>y</sub> - IAS) | 69kt   | 128km/h |





### 1.3.4. Engine type

This manual refer to the engine type ROTAX 912iS2, as per the cover page. Anyway, two alternative engines can be installed and their respective manuals managed via dedicated POH. The allowed engines are:

| ROTAX    | ROTAX    | ROTAX  |
|----------|----------|--------|
| 912ULS2* | 912iS2** | 914UL2 |

<sup>\*</sup> basic aircraft configuration

#### 1.3.5. Propeller type

This manual refer to the propeller type Sensenich W68T2ET-70J. Anyway, alternative propellers can be installed and their respective manuals managed via POH Supplements. Three alternative propellers will not need a POH Supplement as the resulting performances and weighing and balancing are negligible:

| SENSENICH             | SENSENICH             | GT-Tonini              |
|-----------------------|-----------------------|------------------------|
| 2A0R5R70EN            | 3B0R5R68C             | GT-2/173/VRR-<br>FW101 |
| 2 blades - ground adj | 3 blades - ground adj | 2 blades - fix pitch   |

<sup>\*\*</sup> this POH equipment





Ed.1 Rev.1

#### 1.3.6. Fuel

Following the list of approved fuel to be operated with Rotax 912ULS2, 912iS2 and 914UL2.

#### **CAUTION**

Refer and familiarize with the latest approved ROTAX manuals in order to have a continue check of approved fuels.

This list is based on ROTAX SI-912-016R6

|                      |                | Us                                       | age / Descrip                                         | tion             |                                          |             |
|----------------------|----------------|------------------------------------------|-------------------------------------------------------|------------------|------------------------------------------|-------------|
|                      |                | / <b>F</b> / <b>UL</b><br>(min. AKI* 87) | 912 S / ULS - 914 F / UL<br>Min. RON 95 (min. AKI 91) |                  | 912 iSc / iS<br>Min. RON 95 (min. AKI 91 |             |
| MOGAS                |                | '                                        |                                                       |                  |                                          |             |
| European             | EN 228         | Normal                                   |                                                       |                  |                                          |             |
| standard             | EN 228         | 3 Super                                  | EN 22                                                 | 8 Super          | EN 22                                    | 3 Super     |
| Staridard            | EN 228 S       | Super plus                               | EN 228                                                | Super plus       | EN 228 Super plus                        |             |
| Canadian<br>standard | CAN/CGSB-      | 3.5 Qualität 1                           | CAN/CGSB-3.5 Qualität 3                               |                  |                                          |             |
|                      | R 51105-97     | B 51866-2002                             | R 51105-97                                            | R 51866-2002     |                                          |             |
| Russian              | Regular-91/92  | Regular Euro-92                          | 110110007                                             | 1101000 2002     |                                          |             |
| standard             | Premium-95     | Premium Euro-95                          | Premium-95                                            | Premium Euro-95  |                                          |             |
|                      | Super-98       | Super Euro-98                            | Super-98                                              | Super Euro-98    |                                          |             |
| US standard          | ASTM           | D4814                                    | ASTM D4814                                            |                  |                                          |             |
|                      | DSTU 4839-2007 |                                          | DSTU 4                                                | 839-2007         | DSTU 4                                   | 839-2007    |
| Ukrainian            | A-92           | -Euro                                    |                                                       |                  |                                          |             |
| standard             | A-95-Euro      |                                          | A-95-Euro                                             |                  | A-95-Euro                                |             |
|                      | A-98-Euro      |                                          | A-98-Euro                                             |                  | A-98-Euro                                |             |
| AVGAS                |                |                                          |                                                       |                  |                                          | ]           |
| leaded               | AVGAS 100 L    | L ASTM D910                              | AVGAS 100 LL ASTM D910                                |                  | AVGAS 100 L                              | L ASTM D910 |
| unleaded             |                | .91<br>D7547                             | UL91<br>ASTM D7547                                    |                  |                                          |             |
| released bra         | and-name 1)    |                                          |                                                       |                  |                                          | 1           |
|                      |                | O AVGAS                                  | HJELMO                                                | O AVGAS          |                                          |             |
|                      |                | 6 UL                                     |                                                       | 96 UL            |                                          |             |
|                      |                | O AVGAS<br>8 UL                          |                                                       | O AVGAS<br>98 UL |                                          |             |

<sup>1)</sup> unleaded, mainly available in the Scandinavian area

<sup>\*</sup> Anti-Knock Index, (RON+MON)/2

The Tecnam Astore is equipped with two leading edge tanks while the entire fuel line is located below the cabin floor.

Following the capacity of each tank is shown:

Total fuel capacity (both tanks): 29US Gal (110lt)
Total Usable 28.8US Gal (109lt)

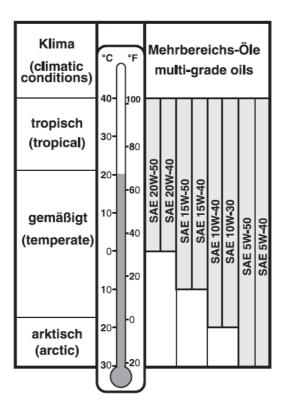
#### 1.3.7. **Oil**

The oil specification to be used on Rotax engines are within the latest applicable revisions of Operator's Manual.

#### **CAUTION**

Refer and familiarize with the latest approved ROTAX manuals in order to have a continue check of approved fuels.

This list is based on ROTAX SI-912-016R6


The maximum oil consumption is 0.016USGal/hr 0.06l/hr while the table of allowed lubricants is following reported. This oil consumption is always enough to perform a maximum endurance flight as the difference between the maximum and minimum oil level, at maximum hourly consumption, will need 8.3 hours to be consumed.

The oil tank capacity is 0.8US Gal (3.0lt) without the oil line, so without radiator, engine and hoses.





Ed.1 Rev.1



#### 1.3.8. WARNING - CAUTION - NOTE

The following definitions apply to warnings, cautions and notes used in this Pilot's Operating Handbook

### **WARNING**

Means that the non-observation of the corresponding procedure leads to an immediate or important degradation of the flight safety

#### **CAUTION**

Means that the non-observation of the corresponding procedure leads to a minor or to a more or less long-term degradation of the flight safety

### **NOTE**

Draws the attention to any special item not directly related to safety but which is important or unusual





#### 2. Section No. 2 - Limitations

#### 2.1. Airspeed Indicator

The ASI (Air Speed Indicator) shows the airspeed in IAS (Indicated Air Speed). The correlation between the IAS and CAS (Calibrated Air Speed) is given in the Section 5 - Performances.

Following the table of ASI markings is shown.

| Arc Color | Lwr Limit<br>IAS | Upper Limit<br>IAS | Remarks                       |
|-----------|------------------|--------------------|-------------------------------|
| White     | $V_{s0} = 32$    | $V_{FE} = 68$      | Flap Operating Range          |
| Green     | $V_{s1} = 35$    | $V_{NO} = 115$     | Normal Operating Range        |
| Yellow    | $V_{NO} = 115$   | $V_{NE} = 150$     | Caution Range*                |
|           |                  |                    |                               |
| Red       | $V_{NE} = 150$   |                    | Never Exceed Speed (red line) |

<sup>\*</sup>Speeds above  $V_{\text{NO}}$  and up to  $V_{\text{NE}}$  can be reached and flown only in calm and smooth air. Flights into gusts conditions above  $V_{\text{NO}}$  should be performed carefully.

Maneuvering Speed (V<sub>A</sub>) is 97 KIAS





#### 2.2. **Stall Speeds**

The following table shows the stalling speeds at MTOW. The three flap position are shown in the table. Approach to stall is executed with engine idle and speed decrease 1kt/sec while the CoG is in its full fwd position.

| STALL SPEED TABLE     |       |          |      |           |      |           |      |
|-----------------------|-------|----------|------|-----------|------|-----------|------|
| Weight                | Bank  | Flaps 0° |      | Flaps T/O |      | Flaps LND |      |
| [kg/lb]               | [deg] | KIAS     | KCAS | KIAS      | KCAS | KIAS      | KCAS |
|                       | 0     | 35       | 44   | 34        | 43   | 32        | 38   |
|                       | 15    | 36       | 46   | 35        | 44   | 32        | 39   |
| 599/1320<br>[FWD CoG] | 30    | 39       | 49   | 38        | 46   | 35        | 41   |
|                       | 45    | 45       | 54   | 44        | 51   | 40        | 46   |
|                       | 60    | 58       | 64   | 55        | 61   | 50        | 54   |

#### 2.3. **Ceiling**

Maximum Service Ceiling is 15.500ft (residual rate of climb 100 ft/min).

#### **Load Factors** 2.4

Clean configuration positive/negative load factors: +4 / -2

T/O and LND flap load factors: +2/0

### 2.5. Approved maneuvers

This aircraft is intended for non-aerobatic and VFR operation only. Non-aerobatic operation includes:

- Any maneuver pertaining to "normal" flight
- Stalls (except whip stalls)
- Lazy eights
- Chandelles
- Turns with maximum angle of bank of 60°

#### **WARNING**

Max entry speed for all these maneuvers is the V<sub>A</sub>

#### **WARNING**

Flight into expected and/or known icing conditions is **prohibited**IFR flight is **prohibited**Aerobatic flight is **prohibited**Intentional spins **not allowed** 

#### **WARNING**

Limit load factor could be exceeded by moving the flight controls abruptly to full control deflection at a speed above  $V_{\rm A}$  (Maneuvering Speed)





### 2.6. Powerplant limitations

This section refers to the 912iS2 limitations and related markings. Refer to the dedicated POH if your aircraft is equipped with different engine (912ULS2 or 914UL2).

### 2.6.1. Power Output

|           | Max Power<br>kW (hp) | Max rpm.<br>rpm<br>prop.(engine) | Time max.<br>(min) |
|-----------|----------------------|----------------------------------|--------------------|
| Max.      | 73.5 (100)           | 2388 (5800)                      | 5                  |
| Max cont. | 69.0 (92.0)          | 2265 (5500)                      | -                  |

#### **NOTE**

Static engine rpm should be  $5100 \pm 250$  under no wind conditions.







### 2.6.2. Temperature/Pressure limits

Following, with reference to the current version of ROTAX 912iS operator's manual, the table with the temperature and pressure limits.

| ITEM                      | value      | value     | Remarks                    |
|---------------------------|------------|-----------|----------------------------|
| Max. coolant temperature  | 120°C      | 248F      |                            |
| Max. CHT                  | 135°C      | 275F      |                            |
| MIN oil temperature       | 50°C       | 120F      |                            |
| MAX oil temperature       | 130°C      | 266F      |                            |
| Normal oil temp. range    | 90-110°C   | 190-230F  |                            |
| MIN oil pressure          | 0.8bar     | 12psi     | Rpm < 3.500                |
| Normal oil pressure range | 2.0-5.0bar | 29-73psi  | Rpm > 3.500                |
| MAX oil pressure          | 7.0bar     | 102psi    | Short period at cold start |
| MIN temperature at start  | -20°C      | -13F      | Oil temp.                  |
| MAX OAT at start          | 50°C       | 120F      | On ground                  |
| MAX OAT at start          | 60°C       | 140F      | In flight                  |
| MIN fuel pressure         | 2.80bar    | 42psi     |                            |
| MAX fuel pressure         | 3.20bar    | 45psi     |                            |
| MAX EGT                   | 950°C      | 1740      |                            |
| Acceleration              | max -0.5g  | max 5sec. |                            |





#### **NOTE**

Tecnam strongly recommend to be always updated concerning the latest manuals editions/revisions.

The direct link to the ROTAX T-Publications page is:



### 2.7. Weights

| MTOW                           | 1320 lb | 599 kg |
|--------------------------------|---------|--------|
| Ramp Weight                    | 1324 lb | 601 kg |
| Maximum allowed baggage weight | 77 lb   | 35 kg  |

### 2.8. Center of Gravity

| FWD Limit   | 19% MAC<br>1.86mt [73.3in]                                                 | All weights |  |
|-------------|----------------------------------------------------------------------------|-------------|--|
| AFT Limit   | 32% MAC All weights 2.04mt [80.3in]                                        |             |  |
| Datum       | engine flange without spacer (See sect.6) or MAC leading edge (See sect.6) |             |  |
| Level plane | Baggage compartment floor (both planes)                                    |             |  |

#### 2.9. Pilot's seat

The PIC (Pilot In Command) can seat either on Left or Right seat as all flight controls can be easily reached.

#### **NOTE**

If two pilots are flying together, the PIC is the pilot seating on the Left

#### **NOTE**

The flight instructor seats on the Right





#### 3. Section No. 3 - Emergency Procedures

#### 3.1. **Introduction**

This Section 3 includes checklists and procedures to be used in the event of emergencies. Emergencies caused by a malfunction of the aircraft or engine is extremely rare if appropriate maintenance and pre-flight inspections are carried out.

In case of emergency, suggestions of the present section should be considered and applied as necessary to correct the problem.

Before operating the aircraft, the pilot should be familiar with the present manual and so with the present section. Further, a continued and appropriate training program should be provided to be always able to manage simulated emergencies.

In case of emergency the pilot should act as follows:

- Keep control of the airplane
- Analyze the situation
- Apply the pertinent procedure
- Inform the Air Traffic Control if time and conditions allow

| AIRSPEEDS FOR EMERGENCY SITUATIONS - KIAS |          |  |  |  |
|-------------------------------------------|----------|--|--|--|
| Engine failure after takeoff (T/O flaps)  | 67 Knots |  |  |  |
| Engine failure during flight              | 71 Knots |  |  |  |
| Maneuvering speed                         | 97 Knots |  |  |  |
| Maximum glide                             | 71 Knots |  |  |  |



Standard safety equipment, even if not part of Minimum Equipment List, includes a **Fire Extinguisher** and **Hammer.** 

### 3.2. Emergency frequencies and codes

First radio ALERT MESSAGE to the FREQUENCY in use

Radio EMERGENCY FREQ. = 121.50Mhz

Transponder CODE = 7700

#### **NOTE**

If your aircraft is equipped with ELT, refer to the related POH Supplement in the Section 9





## 3.3. Emergency Checklists

## 3.3.1. Engine fire **DURING START**

| Throttle          | IDLE                |
|-------------------|---------------------|
| Fuel Pump 1 & 2   | BOTH OFF            |
| Fuel Valve        | OFF                 |
| Cabin heat        | OFF                 |
| Parking brake     | APPLY               |
| Master key        | OFF                 |
| Fire extinguisher | IF POSSIBLE GRAB IT |
| Emergency EXIT    | ESCAPE FROM THE A/C |

### 3.3.2. Engine fire DURING TAKE OFF

| Throttle          | IDLE                |
|-------------------|---------------------|
| Fuel Pump 1 & 2   | BOTH OFF            |
| Brakes            | APPLY               |
| when the aircraft | is under control    |
| Fuel Valve        | OFF                 |
| Cabin heat        | OFF                 |
| Master key        | OFF                 |
| Lane A & B        | BOTH OFF            |
| Parking brake     | APPLY               |
| Fire extinguisher | IF POSSIBLE GRAB IT |
| Emergency EXIT    | ESCAPE FROM THE A/C |





### 3.3.3. Engine fire **IN FLIGHT**

| Throttle                             | IDLE            |
|--------------------------------------|-----------------|
| Fuel Pump 1 & 2                      | BOTH OFF        |
| Cabin heat                           | OFF             |
| Fuel Valve                           | OFF             |
| Cabin vents                          | OPEN            |
| communicate the emergency to the ATC |                 |
| Master key                           | OFF             |
| Forced Landing                       | APPLY CHECKLIST |

### **WARNING**

Do not attempt an in-flight engine restart

## 3.3.4. Cabin fire **IN FLIGHT**

| Cabin heat                           | OFF                        |
|--------------------------------------|----------------------------|
| Cabin vents                          | OPEN                       |
| communicate the emergency to the ATC |                            |
| Master key                           | OFF                        |
| Fire extinguisher                    | SPRAY TO THE FLAME<br>BASE |
| Forced Landing                       | APPLY CHECKLIST            |





# 3.3.5. Engine failure **DURING TAKE OFF**

| Throttle                           | IDLE                |  |
|------------------------------------|---------------------|--|
| Brakes                             | APPLY               |  |
| Fuel Pump 1 & 2                    | BOTH OFF            |  |
| when the aircraft is under control |                     |  |
| Fuel Valve                         | OFF                 |  |
| Master key                         | OFF                 |  |
| Lane A & B                         | BOTH OFF            |  |
| Parking brake                      | APPLY               |  |
| Emergency EXIT                     | ESCAPE FROM THE A/C |  |

# 3.3.6. Engine failure <u>IMMEDIATELY AFTER</u> <u>TAKE OFF</u>

| Airspeed               | 67 KIAS                                  |
|------------------------|------------------------------------------|
| Throttle               | IDLE                                     |
| Fuel Pump 1 & 2        | BOTH OFF                                 |
| Fuel Valve             | OFF                                      |
| Flaps                  | LANDING                                  |
| Landing area           | NO MORE OF ±45° (LEFT<br>OR RIGHT AHEAD) |
| Forced Landing         | APPLY CHECKLIST                          |
| Just before touch down |                                          |
| Canopy                 | UNLATCH CENTRAL*                         |





# 3.3.7. Engine failure IN FLIGHT (RESTART)

| Airspeed                       | 71 KIAS         |  |
|--------------------------------|-----------------|--|
| Throttle                       | ~75%            |  |
| Fuel Pump 1 & 2                | BOTH ON         |  |
| Fuel Valve                     | CHANGE TANK     |  |
| Starter button                 | PUSH            |  |
| If the engine does not restart |                 |  |
| Forced Landing                 | APPLY CHECKLIST |  |

# 3.3.8. **POWER-OFF Forced landing**

|                                           | 0               |  |
|-------------------------------------------|-----------------|--|
| Airspeed                                  | 71 KIAS         |  |
| Throttle                                  | IDLE            |  |
| Fuel Pumps                                | BOTH OFF        |  |
| Fuel Valve                                | OFF             |  |
| Safety Belts                              | TIGHT           |  |
| CANOPY LATCHES                            | UNLOCK LH & RH  |  |
| Once a safe landing area has been located |                 |  |
| Communication with ATC ESTABLISH          |                 |  |
| Flaps AS NEEDED                           |                 |  |
| Touchdown Speed                           | 41 KIAS         |  |
| Just immediately before touchdown         |                 |  |
| CANOPY LATCHES                            | UNLOCK CENTRAL* |  |





\*The canopy has been designed in order to avoid hitting the passengers heads when opened. Before normal take-off, check if your and your passenger's heads are clear from the canopy track.

# 3.3.9. **POWER-ON Forced landing**

| Airspeed                                  | 71 KIAS        |  |
|-------------------------------------------|----------------|--|
| Throttle                                  | AS NEEDED      |  |
| Safety Belts                              | TIGHT          |  |
| CANOPY LATCHES                            | UNLOCK LH & RH |  |
| Once a safe landing area has been located |                |  |
| Communication with ATC                    | ESTABLISH      |  |
| Flaps                                     | AS NEEDED      |  |
| Touchdown Speed                           | 41 KIAS        |  |
| Just immediately before touchdown         |                |  |
| CANOPY LATCHES UNLOCK CENTRAL*            |                |  |
| after touchdown                           |                |  |
| Throttle                                  | IDLE           |  |
| Fuel Pump 1 & 2                           | BOTH OFF       |  |
| Fuel Valve                                | OFF            |  |
| LANE A & B                                | BOTH OFF       |  |
| Master key                                | OFF            |  |





# 3.3.10. Engine OUT GLIDING

| Flaps                                                                                                                       | RETRACTED |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Airspeed                                                                                                                    | 71 KIAS   |  |
| Engine RESTART                                                                                                              | PERFORM   |  |
| Glide ratio is 11.5 therefore with 1000 ft of altitude, it is possible to cover ~1.9 nautical miles in zero wind conditions |           |  |

# 3.3.11. FLAT NLG TIRE landing

| Pre-landing checklist                                    | COMPLETE |  |
|----------------------------------------------------------|----------|--|
| Once landed maintain aircraft NOSE HIGH attitude as long |          |  |
| as possible                                              |          |  |

# 3.3.12. FLAT MLG TIRE landing

| Pre-landing checklist | COMPLETE |
|-----------------------|----------|
|                       |          |

Align the a/c on the opposite side of runway in respect of the defective tire side to compensate for change in direction, which is to be expected during final rolling.

Touchdown with the GOOD TIRE FIRST and hold aircraft with the flat tire off the ground as long as possible unless crosswind component does not avoid this





#### 3 3 13 Inadvertent SPIN

#### **NOTE**

The first letter in each of the four primary recovery inputs spells out the acronym, **PARE**. The **PARE** format mimics the most docile spin configuration possible, affording the greatest response to recovery inputs. Errant control inputs that may aggravate the spin are avoided in the process. As a mental checklist, it forces you to focus on the appropriate recovery actions. Calling each item out loud also tends to reinforce the physical inputs.

| Power                                          | IDLE                 |  |
|------------------------------------------------|----------------------|--|
| Ailerons                                       | NEUTRAL              |  |
| Rudder                                         | FULL OPPOSITE ROTAT. |  |
| Elevator                                       | THROUGH NEUTRAL      |  |
| HOLD THESE INPUTS UNTIL ROTATION STOPS<br>THEN |                      |  |
| Rudder                                         | NEUTRAL              |  |
| Elevator                                       | RECOVER              |  |





#### 3.3.14. Inadvertent ICING encounter

## **WARNING**

Immediately get away from icing conditions considering a suitable path to return to the last non-icing area (in some cases could be a climb with full throttle).

| Pitot Heat (if present) | ON                              |
|-------------------------|---------------------------------|
| Throttle                | INCREASE                        |
| Cabin heat              | ON                              |
| Landing                 | PERFORM with FLAPS 0°           |
| Approach and touch down | INCREASED AIRSPEED<br>NECESSARY |

#### CAUTION

In case of high ice accretion on wing leading edge, stall speed may increase.

# **WARNING**

If your Astore is not equipped with heated pitot and ASI fails, you can carefully use the Ground Speed indication from the GPS in order to have further information on your actual speed. Try to compare the GS with the wind speed asking ATC or finding some chimney.

# 3.3.15. 912 iS ECU system failures

Some of the failures can be detected by the annunciator panel's lights on the cockpit centerline - upper position. The panel is composed by 5 lamps:




**LANE A/B**: they illuminate during the pre-start check and when some problem occurs. They can flash or be permanently ON in case of some failure;

**BACK UP BATTERY ON**: it illuminates when the related guarded switch is in ON position (check EMS GENERATOR FAILURE procedure);

**FUEL PUMP**: they illuminate when the related fuel pump is drawing current (is functioning);

# 3.3.15.1. LANES light failures



| If:                                   |  |
|---------------------------------------|--|
| One lamp is ON, the other is OFF      |  |
| One lamp is ON, the other is FLASHING |  |
| Both lamps are ON                     |  |
| Both lamps are FLASHING               |  |
| LAND AS SOON AS POSSIBLE              |  |

If one lamp is flashing while the other is OFF the flight operations are limited for maximum 10 hours.

| LANE A   | LANE B   | Action                   |
|----------|----------|--------------------------|
| OFF      | Flashing | Limited flight operation |
| Flashing | OFF      | Limited flight operation |
| OFF      | ON       | Land the aircraft        |
| Flashing | Flashing | Land the aircraft        |
| Flashing | ON       | Land the aircraft        |
| ON       | OFF      | Land the aircraft        |
| ON       | Flashing | Land the aircraft        |
| ON       | ON       | Land the aircraft        |

ON = permanently on



Ed 1 Rev 0

### 3.3.15.2. Engine vibrations

#### If:

High level of vibration are encountered

(likely) Vibration are coupled with power loss

# FLIGHT LIMITATIONS ARE FORBIDDEN MAINTENANCE CHECK MUST BE PERFORMED

# 3.3.15.3. EMS generator failure

If the A alternator (TO BE NOT CONFUSED WITH "A" LANE) stops its function or has a failure, the EMS switches automatically on alternator "B" in order to ensure the correct engine functions.

#### **WARNING**

Following this automatic switching, the aircraft battery is not more charged. Shut down everything not strictly needed to continue the flight.

In the extremely rare event that both alternators fail, the engine stops. In this case the back-up battery switch can be activated: from this moment the engine is functioning only on the aircraft battery limiting the engine operation to few minutes if an external generator is not installed. For this reason avoid to keep turned ON any non necessary avionic and/or system.



The back up battery lamp means that the related switch is into ON position.

# 3.3.15.4. Exceeding coolant temp.

| Throttle                 | DECREASE |  |
|--------------------------|----------|--|
| Land as soon as pratical |          |  |

#### NOTE

Register the event in the engine logbook indicating duration and pressure reached. Carry out unscheduled maintenance check according to the ROTAX AMM. Check the ECU log file.

# 3.3.15.5. Exceeding oil temp.

| Throttle                                                                                                      | DECREASE           |  |  |
|---------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| Airspeed                                                                                                      | DECREASE           |  |  |
| If possible perform a climb in order to allow oil temperature to increase and consequently oil press decrease |                    |  |  |
| Oil temp                                                                                                      | CHECK if DECREASES |  |  |
| Land as soon as pratical                                                                                      |                    |  |  |

#### NOTE

Register the event in the engine logbook indicating duration and pressure reached. Carry out unscheduled maintenance check according to the ROTAX AMM. Check the ECU log file.

## 3.3.15.6. Loss of oil press. - in flight

| Throttle                 | AS MIN. AS POSSIBLE |  |
|--------------------------|---------------------|--|
| Land as soon as pratical |                     |  |

#### NOTE

Check oil system and register the event in the engine logbook indicating duration and pressure reached. Carry out unscheduled maintenance check according to the ROTAX AMM. Check the ECU log file.



3.3.15.7. Loss of oil press. - on ground

| Throttle        | IDLE     |
|-----------------|----------|
| Fuel Pump 1 & 2 | BOTH OFF |
| Lane A & B      | BOTH OFF |
| Master key      | OFF      |
| Fuel Valve      | OFF      |
| Parking Brake   | APPLY    |

#### **NOTE**

Check oil quantity in the tank, Check the oil quality. Register the event in the engine logbook indicating duration and pressure reached. Carry out unscheduled maintenance check according to the ROTAX AMM. Check the ECU log file



3.3.15.8. Exceeding fuel pressure

| Throttle                                        | AS MIN. AS POSSIBLE |  |
|-------------------------------------------------|---------------------|--|
| If Fuel Press is too high                       | FUEL PUMP 2 OFF     |  |
| If Fuel Press is too low and fuel pump 2 is OFF | FUEL PUMP 2 ON      |  |
| Land as soon as possible                        |                     |  |
| Lane A & B                                      | BOTH OFF            |  |

## NOTE

Register the event in the engine logbook indicating duration and pressure reached. Carry out unscheduled maintenance check according to the ROTAX AMM. Check the ECU log file

# 3.3.15.9. *EMS voltage low*

| Flight Operation             | TO BE LIMITED if A or B Voltage is OK |  |
|------------------------------|---------------------------------------|--|
| Land as soon as possible     |                                       |  |
| Throttle AS MIN. AS POSSIBLE |                                       |  |
| Land as soon as possible     |                                       |  |

#### NOTE

Register the event in the engine logbook. Carry out unscheduled maintenance check according to the ROTAX AMM.

Check the ECU log file

3.3.15.10. Sprag clutch dec. failure

| Engine     | IMMEDIATELY<br>SHUT DOWN |
|------------|--------------------------|
| Throttle   | IDLE                     |
| Lane A & B | BOTH OFF                 |
| Master key | OFF                      |

#### NOTE

Register the event in the engine logbook. Carry out unscheduled maintenance check according to the ROTAX AMM.

Check the ECU log file

#### 3.3.16. Loss of TRIM control

In the event of (PITCH) TRIM control loss, the pilot should be always able to control the aircraft until the landing. Depending on the last position assumed by the trim tab (shown inside the EMS display), the required action may be different:

#### 3.3.16.1. **NEUTRAL TRIM**

In this case, the aircraft is basically able to continue the flight in all the configurations of speed and flap. No action or special procedure is necessary.

#### 3.3.16.2. NOSE UP RANGE TRIM

Having the trim tab unserviceable with the "locked" position within the pitch up range means that the pilot should reduce the speed and actuate the flap in order to increase the comfort.

| Pitch trim LOCK in nose up area | RECOGNIZED                               |  |
|---------------------------------|------------------------------------------|--|
| Speed                           | REDUCE as necessary to maximize comfort  |  |
| Flap                            | ACTUATE as necessary to maximize comfort |  |
| Land as soon as practical       |                                          |  |

Ed 1 Rev 0

#### 3.3.16.3. *NOSE DW RANGE TRIM*

Having the trim tab unserviceable with the "locked" position within the pitch dw range means that the pilot should retract flaps and increase speed. If sufficient runway is available, a flap extension not to FULL position is preferable.

| Pitch trim LOCK in nose dw                                           | RECOGNIZED                                |  |
|----------------------------------------------------------------------|-------------------------------------------|--|
| area                                                                 |                                           |  |
| Flap                                                                 | RETRACT                                   |  |
| Speed                                                                | INCREASE as necessary to maximize comfort |  |
| Land as soon as practical with flaps in the most convenient position |                                           |  |

# 3.3.17. Loss of ALTITUDE indication

TECNAM Astore, in the configuration shown in this manual, is allowed to fly only in VMC conditions. For this reason, the loss of altitude indication shall not have hazardous effects on the flight.

| Last altitude                                                                | CHECK with ATC |  |
|------------------------------------------------------------------------------|----------------|--|
| Communicate the failure to the ATC and provide the F from XTR (if installed) |                |  |
| Alternative source of alt Use the GPS*                                       |                |  |
| Land as soon as practical                                                    |                |  |

<sup>\*</sup>This GPS value does not correspond with the barometric one and is evaluated from satellite triangulation.

#### 3.3.1. Loss of AIRSPEED indication

TECNAM Astore, in the configuration shown in this manual, is allowed to fly only in VMC conditions. Despite that, the loss of airspeed indication could have hazardous effects on the safety of flight, especially during the landing and low speed procedures. Tecnam suggests to train about the stall path response of the aircraft in order to have them always easily recognizable. Also, Tecnam provides as standard equipment an iPad with GPS functions. This could help in knowing the speed range always in consideration that the speed will be referenced to the ground.

| Communicate the failure to the ATC and ask for chase plane availability or latest wind information on runway |                                             |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| Autopilot (if installed) OFF                                                                                 |                                             |  |
| Alternative source of speed                                                                                  | Use the GPS*                                |  |
| Speed corrections                                                                                            | Use the GPS with ATC wind data provided     |  |
| Speeds                                                                                                       | Try to have a positive margin on the speeds |  |
| Land as soon as practical                                                                                    |                                             |  |

<sup>\*</sup>This GPS value correspond with Ground Speed, and does not take into account the wind direction and speed.





#### 4. Section No. 4 - Normal Procedures

#### 4.1. Introduction

This section provides checklists and procedures for all the normal operations referred to the TECNAM Astore equipped as per this POH Cover page. For different equipments, please refer to the related Supplement.

# 4.2. Upper cowling opening

In order to perform the engine daily inspections, the upper cowling is provided by two big gull-wing access doors secured by two cam-loc each. In order to open the upper cowling following is the procedure to be used.

| Parking brake        | ON                |
|----------------------|-------------------|
| Master key           | OFF               |
|                      |                   |
| Cam-locs             | UNLOCK (1/4 turn) |
| Engine cowling doors | OPEN              |

# 4.1. Upper cowling securing

| Engine cowling doors | CLOSED           |
|----------------------|------------------|
| Cam-locs             | LOCK (1/4 turn)* |

#### \*WARNING

Butterfly or slot-head Cam-locks are locked when tabs (or slot) are horizontal and open when tabs (or slots) are vertical.





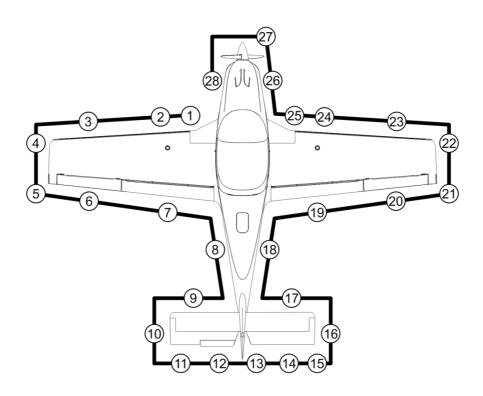
# 4.2. **Pre-Flight Inspections**

Before each flight, it is necessary to carry out a complete inspection of the aircraft starting with a cabin inspection followed by an external and engine inspection.

# 4.2.1. Cabin Inspection

| РОН                                     | ONBOARD       |
|-----------------------------------------|---------------|
| Weight and balance                      | CHECK         |
| Flight controls                         | CHECK FREEDOM |
| Baggage (if any)                        | FASTEN        |
| Parking brake                           | SET           |
| Friction lock                           | CHECK         |
| Throttle                                | IDLE          |
| Master key                              | ON            |
| Flap travel                             | PERFORM FULL  |
| Trim travel                             | PERFORM FULL  |
| Stall warning (if present)              | CHECK         |
| NAV Lights                              | CHECK         |
| Strobe Lights                           | CHECK         |
| Landing Light                           | CHECK         |
| Fuel tank level indication (inside EMS) | CHECK         |
| Master key                              | OFF           |

#### **CAUTION**


Fuel level indicated by the fuel quantity indicators (on the instrument panel) is only indicative. For flight safety, pilot should verify actual fuel quantity visually in tanks before takeoff

# 4.2.2. External inspections - Walk-around

External visual inspection (generally called "check") means that an inspection for any defect, crack, detachments, free play and unsafe or improper installation must be performed. For all the control surfaces visual inspection also involves check for freedom of movement, travel stops and safety of each pin or bolt.

The next image shows the walk around inspections to be carried out before each flight. Each number corresponds to one or more controls to be performed.









|   | 1         |                             | T                            |
|---|-----------|-----------------------------|------------------------------|
| 1 | i.        | LH wing leading edge        | Check                        |
|   | ii.       | LH cabin skin               | Check                        |
|   | iii.      | LH main gear fairing        | Check                        |
|   | iv.       | LH main gear brake and      | Check                        |
|   |           | hose fitting                |                              |
|   | v.<br>vi. | LH main gear spring LH tire | Check                        |
|   | VI.       | LH tire                     | Check inflation if necessary |
|   |           |                             | (40psi)                      |
| 2 | i.        | LH Fuel filler cap          | Visual fuel level check      |
|   | ii.       | LH Inboard leading edge     | Check                        |
|   | iii.      | LH Main spar                | Check rivets                 |
|   | iv.       | LH tank drain               | Perform drainage             |
| 3 | i.        | LH Outboard leading edge    | Check                        |
|   | ii.       | LH Main spar                | Check rivets                 |
|   | iii.      | Pitot/static tube           | Remove cover                 |
|   | iv.       | Pitot/static tube           | Check Unobstructed           |
| 4 | i.        | LH wing tip                 | Check                        |
|   | ii.       | LH nav/strobe lights        | Check                        |
| 5 | i.        | LH Fuel vent                | Check Unobstructed           |
| 6 | i.        | LH aileron                  | Check                        |
|   | ii.       | LH rear spar - outboard     | Check rivets                 |
| 7 | i.        | LH Flap                     | Check                        |
|   | ii.       | LH rear spar - inboard      | Check rivets                 |
| 8 | i.        | Baggage door                | Check                        |
|   | ii.       | Tailcone structure          | Check                        |
|   | iii.      | Parachute cover             | Check                        |
|   | iv.       | Inspection panel            | Check                        |
|   | V.        | Ext. PWR recept. (if any)   | Check CLOSED                 |





|    |      |                               | 1            |
|----|------|-------------------------------|--------------|
| 9  | i.   | LH Stabilizer fittings        | Check        |
|    | ii.  | LH stabilizer leading edge    | Check        |
|    | iii. | LH stabilizer structure       | Check        |
| 10 | i.   | LH elevator tip               | Check        |
|    | ii.  | LH elevator outboard hinge    | Check        |
|    | iii. | LH elev. trailing edge        | Check        |
| 11 | i.   | LH elevator central hinge     | Check        |
|    | ii.  | LH elevator travel stops      | Check        |
| 12 | i.   | trim tab - gen. conditions    | Check        |
|    | ii.  | trim tab hinge                | Check        |
|    | iii. | trim tab control plate        | Check        |
|    | iv.  | trim tab control rod          | Check        |
|    | V.   | trim tab actuator cover plate | Check        |
| 13 | i.   | RH elevator central hinge     | Check        |
|    | ii.  | Stabilizer rear spar fittings | Check rivets |
|    | iii. | Rudder - gen. conditions      | Check        |
|    | iv.  | Rudder hinges                 | Check        |
|    | V.   | Rudder fairings               | Check        |
|    | vi.  | Rudder control cables         | Check        |
| 14 | i.   | RH elevator tip               | Check        |
| 15 | ii.  | RH elevator outboard hinge    | Check        |
| 16 | iii. | RH elev. trailing edge        | Check        |
| 17 | i.   | RH Stabilizer fittings        | Check        |
|    | ii.  | RH stabilizer leading edge    | Check        |
|    | iii. | RH stabilizer structure       | Check        |
| 18 | i.   | Tailcone structure            | Check        |
| 19 | i.   | RH Flap                       | Check        |





|    | ii.   | RH rear spar - inboard              | Check rivets                         |
|----|-------|-------------------------------------|--------------------------------------|
| 20 | i.    | RH aileron                          | Check                                |
|    | ii.   | RH rear spar - outboard             | Check rivets                         |
| 21 | i.    | RH Fuel vent                        | Check Unobstructed                   |
| 22 | i.    | RH wing tip                         | Check                                |
|    | ii.   | RH nav/strobe lights                | Check                                |
| 23 | i.    | RH Outboard leading edge            | Check                                |
|    | ii.   | RH Main spar                        | Check rivets                         |
| 24 | V.    | RH Fuel filler cap                  | Check                                |
|    | vi.   | RH Inboard leading edge             | Check                                |
|    | vii.  | RH Main spar                        | Check rivets                         |
|    | viii. | RH tank drain                       | Perform drainage                     |
| 25 | vii.  | RH wing leading edge                | Check                                |
|    | viii. | RH cabin skin                       | Check                                |
|    | ix.   | RH main gear fairing                | Check                                |
|    | X.    | RH main gear brake and hose fitting | Check for leaks                      |
|    | xi.   | RH main gear spring                 | Check                                |
|    | xii.  | Quick drain check                   | Drain and check for water            |
|    | xiii. | RH tire                             | Check inflation if necessary         |
|    |       |                                     | (40psi)                              |
| 26 | i.    | Nose gear strut                     | Check for leaks                      |
|    | ii.   | Nose gear fairing                   | Check                                |
|    | iii.  | Nose gear proper friction           | Check force*                         |
|    | iv.   | Nose gear wheel and tire            | Check inflation if necessary (32psi) |
|    | v.    | Nose gear assembly                  | Check                                |
|    | vi.   | Lower engine cowling fit-           | Check                                |

|    | vii.      | ting<br>Lower cowling leaks                        | Check for leaks                         |
|----|-----------|----------------------------------------------------|-----------------------------------------|
| 27 | i.<br>ii. | Propeller and spinner<br>Radiators (oil and water) | Check (see pag.1-13)<br>Check for leaks |
| 28 | i.<br>ii. | Upper cowling fittings Upper cowling structure     | Check<br>Check                          |

<sup>\*</sup>The force needed to rotate it when off from the ground must be 5 to 6kg (11 to 13lb) if pulled on the wheel axle direction.

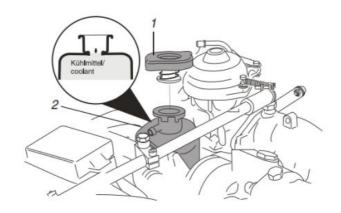
intentionally left in blank





# 4.2.3. External inspections - Engine

These checklists include the necessary inspections of the engine compartment. It is extremely important that everything recognized as unusual is deeply investigated before going in flight. What possible on ground will be no more in the air!


| 1 | Open both LH and RH engine inspection doors |                               |                              |
|---|---------------------------------------------|-------------------------------|------------------------------|
|   |                                             | <b>WARNING</b>                |                              |
|   | Be sure                                     | that Master key, LANES and    | PUMPS are ALL OFF            |
| 2 | i.                                          | General inspection            | Perform                      |
|   | ii.                                         | Foreign objects               | Absent                       |
|   | iii.                                        | Upper and lower cowlings      | Check absence of any leak    |
| 3 | i.                                          | Coolant radiator conditions   | Check (also fittings)        |
|   | ii.                                         | Coolant hoses fittings and    | Check                        |
|   |                                             | status                        |                              |
|   | iii.                                        | Coolant reservoir (overflow)  | Check level*                 |
|   | iv.                                         | Coolant expansion tank        | Check level**                |
| 4 | i.                                          | Propeller hand turn           | Check compression            |
|   | ii.                                         | Oil tank cap                  | Remove                       |
|   | iii.                                        | Prop. hand turn (C.Clockw.)   | Rotate until oil breaths     |
|   | iv.                                         | Oil tank level                | Check (replenish if necess.) |
|   | v.                                          | Oil radiator conditions       | Check (also fittings)        |
|   | vi.                                         | Oil hoses fittings and status | Check                        |
| 5 | i.                                          | Fuel filter and fittings      | Check                        |
|   | ii.                                         | Throttle valve                | Check grease and freedom     |
|   | iii.                                        | Fuse box conditions           | Check                        |
|   | iv.                                         | Drain hoses                   | Check                        |
|   | V.                                          | Air filter and probe          | Check for secure fastening   |



| 6 | i.<br>ii.<br>iii.<br>iv.                                | Exhaust system Exhaust springs Muffler conditions Heat exchanger                             | Check Check Check Check                 |
|---|---------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|
| 7 | i.<br>ii.<br>iii.<br>iv.                                | Engine cowling electrical system Air hoses and filter Firewall components Battery conditions | Check Check Check                       |
| 8 | i.<br>ii.                                               | Fuel hoses and fittings<br>Engine sensors & wiring                                           | Check<br>Check also for thermal damages |
| 9 | Close and secure both LH and RH engine inspection doors |                                                                                              |                                         |

<sup>\*</sup>Should be between MIN and MAX marks

<sup>\*\*</sup>Open the expansion tank level only at first day inspection, with the engine cold. The tank level should be at least 2/3







# 4.3. CHECKLISTS

# 4.3.1. **Before Engine Start**

| 1  | Seat position and belts                      | ADJUST ( <u>WARNING*</u> )  |  |  |  |
|----|----------------------------------------------|-----------------------------|--|--|--|
| 2  | Flight controls                              | CHECK FREEDOM               |  |  |  |
| 3  | Parking brake                                | ENGAGE                      |  |  |  |
| 4  | Throttle friction                            | ADJUST                      |  |  |  |
| 5  | Circuit breakers                             | CHECK ALL IN                |  |  |  |
| 6  | Master key                                   | ON                          |  |  |  |
| 7  | EMS switch                                   | ON                          |  |  |  |
|    |                                              |                             |  |  |  |
| 8  | Fuel Pump 1                                  | ON                          |  |  |  |
| 9  | Start Power Switch                           | HOLD ON                     |  |  |  |
| 10 | Fuel Pump 1                                  | Check run and green lamp ON |  |  |  |
| 11 | Start Power Switch                           | RELEASE                     |  |  |  |
| 12 | Fuel Pump 1                                  | OFF                         |  |  |  |
|    | REPEAT THE PROCEDURE 8 TO 12 FOR FUEL PUMP 2 |                             |  |  |  |
|    |                                              |                             |  |  |  |
| 13 | Flap control                                 | CHECK FULL TRAVEL           |  |  |  |
| 14 | Flap control                                 | SET TO T/O                  |  |  |  |
| 15 | Elevator trim                                | CHECK FULL TRAVEL           |  |  |  |
| 16 | Elevator trim                                | SET ON THE NEUTRAL          |  |  |  |
| 17 | Canopy (three locks)                         | CLOSE AND LOCK              |  |  |  |



| 18 | Safety belts             | FASTEN              |
|----|--------------------------|---------------------|
| 19 | Passenger's safety belts | FASTEN EVEN IF SOLO |
| 20 | Avionics switch          | ON                  |

# \*WARNING

In-flight seat release can cause the loss of airplane control. Check that occupied seats are positively locked





# 4.3.2. Engine Start

|     | 1  | Throttle                | IDLE                                |
|-----|----|-------------------------|-------------------------------------|
|     | 2  | Fuel selector           | SELECT TANK                         |
|     | 3  | Master key              | ON                                  |
|     | 4  | Strobe lights           | ON                                  |
|     | 5  | EFIS/EMS                | ON (wait complete software loading) |
|     | 6  | Propeller disc and area | CLEAR                               |
|     | 7  | LANE A & B              | BOTH ON                             |
|     | 8  | Fuel Pump 1 & 2         | BOTH ON                             |
| .   |    |                         |                                     |
|     | 9  | Start Power Switch      | KEEP ON in this box                 |
| 1   | 10 | LANE A & B Lamps        | Wait functional CHECK               |
|     | 11 | Fuel Pump 1 & 2         | Both lamps ON & noise               |
| ı   | 12 | Prop area               | CLEAR                               |
| ı   | 13 | Starter button          | PUSH                                |
| ı   | 14 | rpm                     | 2.000 - 2.400                       |
| I   | 15 | LANE A & B Volt         | At least 13V                        |
| ! [ | 16 | Battery Volt            | At least 13V                        |
|     | 17 | Start Power Switch      | RELEASE                             |
| ٦   |    |                         |                                     |
| Ī   | 18 | Oil pressure            | CHECK in range within 10sec.        |
| Ī   | 19 | Fuel Pump 1             | OFF and check n.2 works             |



| 20 | Fuel Pump 1       | ON                      |
|----|-------------------|-------------------------|
| 21 | Fuel Pump 2       | OFF and check n.1 works |
| 22 | Fuel Pump 2       | ON                      |
| 23 | LANE A & B Lamps  | CHECK BOTH OFF          |
| 24 | Engine Parameters | Within Limits           |

# **WARNING**

If oil pressure doesn't rise within 10 seconds, shut down engine. The maximum oil pressure for cold conditions is 7 bar.

## 4.3.3. **Before TAXIING**

| 1 | Altimeter                   | SET      |
|---|-----------------------------|----------|
| 2 | Parking brake               | OFF      |
| 3 | Radio and Avionics (if any) | ON & SET |

# **4.3.4. TAXIING**

| 1 | Toe brakes        | CHECK functionality   |
|---|-------------------|-----------------------|
| 2 | Throttle          | CHECK proper response |
| 3 | Main gear springs | CHECK proper response |
| 4 | Nose gear damping | CHECK proper response |





# 4.3.5. **Before TAKEOFF**

| 1  | Oil temperature                 | 50-130°C       | 120-266F   |
|----|---------------------------------|----------------|------------|
| 2  | Oil pressure                    | 2.0-5.0bar     | 29-73psi   |
| 3  | Fuel pressure                   | 2.8-3.2bar     | 42-45psi   |
| 4  | Max CHT                         | 135°C          | 275F       |
| 5  | Fuel valve                      | SELECT TANI    | K          |
| 6  | Battery Charge                  | CHECK and A    | MPS > 0    |
| 7  | LANE A & B                      | CHECK > 13V    |            |
| 8  | Throttle                        | SET 4.000 engi | ne rpm     |
| 9  | LANE A Switch                   | OFF            |            |
| 10 | Rpm loss                        | Max 180        |            |
| 11 | LANE A Switch                   | ON             |            |
| 12 | LANE B Switch                   | OFF            |            |
| 13 | Rpm loss                        | Max 180        |            |
| 14 | LANE B Switch                   | ON             |            |
| 15 | Throttle                        | 3.000 rpm      |            |
| 16 | Fuel Valve                      | SELECT fulles  | t tank     |
| 17 | Flap                            | SET T/O        |            |
| 18 | Elevator Trim                   | CHECK to NE    | UTRAL pos. |
| 19 | Flight controls                 | CHECK FREE     | DOM        |
| 20 | Safety belts                    | CHECK FAST     | ENED       |
| 21 | Canopy locks                    | CHECK          |            |
| 22 | Avionics (radio & xtr) if inst. | ON & SET       |            |





# 4.3.6. TAKEOFF and CLIMB

| 1  | Parking brake                                                                                            | OFF                      |
|----|----------------------------------------------------------------------------------------------------------|--------------------------|
| 2  | Runway                                                                                                   | ALIGN                    |
| 3  | Toe Brakes                                                                                               | ACTIVATE                 |
| 4  | NAV & Landing Lights (if inst.)                                                                          | ON                       |
| 5  | Throttle                                                                                                 | FULL (~5.100rpm)         |
| 6  | Engine parameters                                                                                        | CHECK WITHIN LIMITS      |
| 7  | Toe Brakes                                                                                               | RELEASE                  |
| 8  | Rotation speed                                                                                           | $V_R = 39KIAS$           |
| 9  | Climb                                                                                                    | ESTABLISH                |
| 10 | T/O FLAPS $V_x = 51$ KIAS<br>CLEAN $V_x = 57$ KIAS<br>T/O FLAPS $V_y = 62$ KIAS<br>CLEAN $V_y = 69$ KIAS |                          |
| 11 | Fuel pressure                                                                                            | CHECK (min 2.8bar/40psi) |
| 12 | Throttle                                                                                                 | REDUCE TO 5.500rpm       |

# 4.3.7. **CRUISE**

| 1 | Throttle*                | BELOW 5.500rp | m        |
|---|--------------------------|---------------|----------|
| 2 | Oil temperature (NORMAL) | 90-110°C      | 194-230F |
| 3 | Oil pressure             | 2.0-5.0bar    | 29-73psi |
| 4 | Fuel pressure            | 2.8-3.2bar    | 40-42psi |
| 5 | Max CHT                  | 135°C         | 275F     |
| 6 | Fuel level               | MONITOR       |          |

<sup>\*</sup>Cruise settings are shown in Section 5 - Performances

# 4.3.8. **Before LANDING**

| 1 | Fuel valve              | SELECT FULLEST TANK |
|---|-------------------------|---------------------|
| 2 | Landing light           | ON                  |
| 3 | Flaps (on downwind leg) | T/O                 |
| 4 | Downwind speed          | 65KIAS              |
| 5 | Base leg speed          | 60KIAS              |
| 6 | Flaps (on final)        | LAND                |
| 7 | Final speed             | 55KIAS              |
| 8 | Touchdown speed         | 41KIAS              |
| 9 | Brakes                  | AS NECESSARY        |





# 4.3.9. BALKED LANDING

| 1 | Throttle | FULL                 |
|---|----------|----------------------|
| 2 | Speed    | 55KIAS (flaps T/O)   |
| 3 | Flaps    | RETRACT              |
| 4 | Speed    | 68KIAS (flaps RETR.) |

# 4.3.10. AFTER LANDING

| 1 | Flaps         | RETRACT |
|---|---------------|---------|
| 2 | Landing light | OFF     |

# 4.3.11. Engine SHUT DOWN

| 1  | Parking brake   | ENGAGE                     |
|----|-----------------|----------------------------|
| 2  | Throttle        | SET 2.400-3.000 for 1 min. |
| 3  | Fuel Pump 1 & 2 | BOTH OFF                   |
| 4  | Lane B          | OFF                        |
| 5  | Lane A          | OFF                        |
| 6  | Nav. Lights     | OFF                        |
| 7  | Strobe Lights   | OFF                        |
| 8  | Avionics switch | OFF                        |
| 9  | EFIS/EMS switch | OFF                        |
| 10 | Fuel valve      | OFF                        |
| 11 | Master key      | OFF & REMOVE               |

## 4.3.12. Post-Flight CHECKS

| 1 | Flight controls           | LOCK using safety belts  |
|---|---------------------------|--------------------------|
| 2 | Canopy                    | CLOSED and LOCKED        |
| 3 | Wheel chocks and tie-down | ARRANGE (See Sect. No.8) |
| 4 | Parking brake             | IF NECESSARY             |
| 5 | Pitot cover               | PLACE ON                 |
| 6 | Canopy cover              | IF NECESSARY*            |

<sup>\*</sup>When the a/c is parked outside, or if the a/c will not be used for days, it is strongly recommended to use the fuselage cover to protect windshields against dust

#### **NOTE**

always perform a last walk-around in order to check if something is missing such as lights or other

#### 5. Section No. 5 - Performances

This section provides all necessary data for accurate and comprehensive planning of flight activity from takeoff to landing.

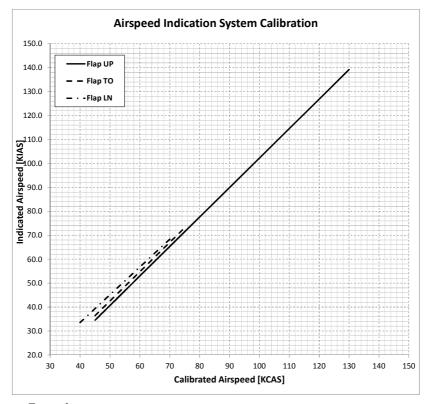
Data reported in graphs and/or tables were determined using:

- "Flight test data" with conditions as prescribed by ASTM and bilateral agreements
- Aircraft and engine in good condition
- Average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - MSL); evaluations of the impact on performance were carried out by theoretical means for:

- Airspeed
- External temperature
- Altitude
- Weight
- Type and condition of runway

### 5.1. Use of Performance Charts


Performance data is presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan journey with required precision and safety.

Additional information is provided for each table or graph.

## 5.2. Airspeed Indicator System Calibration

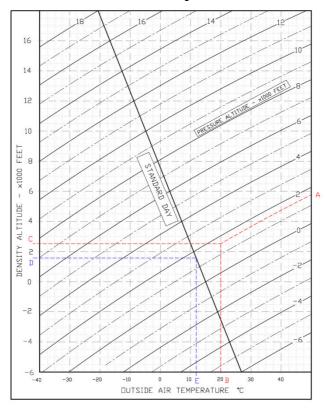
Graph shows indicated airspeed  $V_{\text{IAS}}$  as a function of calibrated airspeed  $V_{\text{CAS}}$ 





Example:

<u>Given</u> <u>Find</u>


KIAS 80.1

Flap: UP KCAS 82.0



# POH

# 5.3. ICAO Standard Atmosphere



Examples:

 Scope
 Given
 Find

 Density Altitude:
 A: Pressure altitude = 1600 ft  $\rightarrow$  C: Density Altitude = 2550 ft 

 ISA Temperature:
 D: Pressure altitude = 1600 ft  $\rightarrow$  E: ISA Air Temperature =  $12^{\circ}C$ 



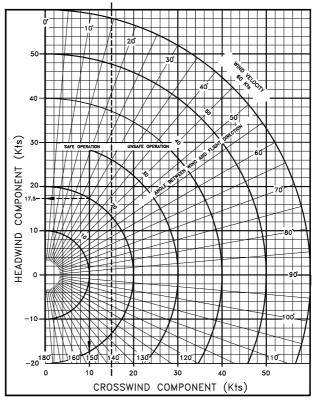
# 5.4. Stall Speed

Weight: 599kg /1320lb Throttle Levers: IDLE CG: Most Forward (19%)

No ground effect

|            |               |      |              | STALL     | SPEED |            |      |
|------------|---------------|------|--------------|-----------|-------|------------|------|
| WEIGHT     | BANK<br>ANGLE | FLA  | PS <b>0°</b> | FLAPS T/O |       | FLAPS FULL |      |
| [kg/lb]    | [deg]         | KIAS | KCAS         | KIAS      | KCAS  | KIAS       | KCAS |
|            | 0             | 35   | 44           | 34        | 43    | 32         | 38   |
| 599/1320   | 15            | 36   | 46           | 35        | 44    | 32         | 39   |
| (FWD C.G.) | 30            | 39   | 49           | 38        | 46    | 35         | 41   |
| (FWD C.G.) | 45            | 45   | 54           | 44        | 51    | 40         | 46   |
|            | 60            | 58   | 64           | 55        | 61    | 50         | 54   |




Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 200 ft with banking below  $30^{\circ}$ .





#### Crosswind 5.5.

Maximum demonstrated crosswind is 20 Kts



Given **Find** 

Wind direction (with respect to aircraft longitudinal axis) = 30°

Headwind = 17.5 Ktss

Ed.1 Rev.0

Wind speed = 20 Kts

Crosswind = 10 Kts



Fd 1



## 5.6. Takeoff distances

Weight = 599kg/1320lb

Flaps: T/O

Speed at Lift-Off = 39 KIAS Speed Over 50ft Obstacle = 50 KIAS Throttle Levers: Full Forward

Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt)
Tailwind: + 15m for each kt (49 ft/kt)
Paved Runway: - 10% to Ground Roll
Runway slope: + 7% to Ground Roll for

| Pressure |              | Distance [m] |        |           |      |     |  |  |
|----------|--------------|--------------|--------|-----------|------|-----|--|--|
| Altitude |              |              | Temper | ature [°C | :]   | ISA |  |  |
| [ft]     |              | -25          | 0      | 25        | 50   | ISA |  |  |
| S.L.     | Ground Roll  | 94           | 119    | 147       | 178  | 135 |  |  |
| 3.L.     | At 50 ft AGL | 280          | 348    | 425       | 510  | 393 |  |  |
| 1000     | Ground Roll  | 103          | 130    | 160       | 194  | 145 |  |  |
| 1000     | At 50 ft AGL | 304          | 378    | 461       | 554  | 420 |  |  |
| 2000     | Ground Roll  | 112          | 141    | 175       | 212  | 156 |  |  |
|          | At 50 ft AGL | 330          | 411    | 501       | 601  | 449 |  |  |
| 3000     | Ground Roll  | 123          | 154    | 191       | 231  | 167 |  |  |
| 3000     | At 50 ft AGL | 359          | 446    | 545       | 654  | 481 |  |  |
| 4000     | Ground Roll  | 134          | 169    | 208       | 253  | 180 |  |  |
| 4000     | At 50 ft AGL | 390          | 486    | 592       | 711  | 515 |  |  |
| 5000     | Ground Roll  | 147          | 185    | 228       | 276  | 193 |  |  |
| 3000     | At 50 ft AGL | 425          | 528    | 645       | 774  | 551 |  |  |
| 6000     | Ground Roll  | 160          | 202    | 249       | 303  | 208 |  |  |
| 8000     | At 50 ft AGL | 463          | 575    | 702       | 843  | 590 |  |  |
| 7000     | Ground Roll  | 176          | 221    | 273       | 331  | 223 |  |  |
| 7000     | At 50 ft AGL | 504          | 627    | 765       | 919  | 633 |  |  |
| 8000     | Ground Roll  | 193          | 242    | 299       | 363  | 241 |  |  |
| 8000     | At 50 ft AGL | 550          | 684    | 834       | 1002 | 679 |  |  |
| 10000    | Ground Roll  | 232          | 292    | 360       | 437  | 280 |  |  |
| 10000    | At 50 ft AGL | 655          | 815    | 994       | 1194 | 782 |  |  |



Weight = 550kg/1210lb

Flaps: T/O
Speed at Lift-Off = 39 KIAS

Speed Over 50ft Obstacle = 50 KIAS

Throttle Levers: Full Forward

**Runway:** Grass

#### Corrections

Headwind: - 5m for each kt (16 ft/kt)
Tailwind: + 15m for each kt (49 ft/kt)
Paved Runway: - 10% to Ground Roll
Runway slope: + 7% to Ground Roll for

| Pressure |                    | Distance [m] |         |           |     |     |  |  |
|----------|--------------------|--------------|---------|-----------|-----|-----|--|--|
| Altitude |                    |              | Tempera | ture [°C] |     | ISA |  |  |
| [ft]     |                    | -25          | 0       | 25        | 50  | ISA |  |  |
| S.L.     | <b>Ground Roll</b> | 77           | 96      | 119       | 144 | 110 |  |  |
| 3.L.     | At 50 ft AGL       | 230          | 286     | 349       | 418 | 323 |  |  |
| 1000     | Ground Roll        | 83           | 105     | 130       | 157 | 118 |  |  |
| 1000     | At 50 ft AGL       | 250          | 310     | 378       | 454 | 345 |  |  |
| 2000     | <b>Ground Roll</b> | 91           | 115     | 142       | 172 | 126 |  |  |
| 2000     | At 50 ft AGL       | 271          | 337     | 411       | 494 | 369 |  |  |
| 3000     | <b>Ground Roll</b> | 100          | 125     | 155       | 188 | 136 |  |  |
| 3000     | At 50 ft AGL       | 295          | 366     | 447       | 537 | 395 |  |  |
| 4000     | <b>Ground Roll</b> | 109          | 137     | 169       | 205 | 146 |  |  |
| 4000     | At 50 ft AGL       | 321          | 399     | 486       | 584 | 422 |  |  |
| 5000     | <b>Ground Roll</b> | 119          | 150     | 185       | 224 | 157 |  |  |
| 3000     | At 50 ft AGL       | 349          | 434     | 529       | 635 | 452 |  |  |
| 6000     | Ground Roll        | 130          | 164     | 202       | 246 | 169 |  |  |
| 8000     | At 50 ft AGL       | 380          | 472     | 576       | 692 | 485 |  |  |
| 7000     | Ground Roll        | 143          | 180     | 222       | 269 | 181 |  |  |
| 7000     | At 50 ft AGL       | 414          | 515     | 628       | 754 | 520 |  |  |
| 8000     | Ground Roll        | 156          | 197     | 243       | 295 | 195 |  |  |
| 8000     | At 50 ft AGL       | 451          | 561     | 685       | 822 | 557 |  |  |
| 10000    | <b>Ground Roll</b> | 188          | 237     | 292       | 355 | 227 |  |  |
| 10000    | At 50 ft AGL       | 538          | 669     | 816       | 980 | 642 |  |  |





## Weight = 500kg/1100lb

Flaps: *T/O* 

Speed at Lift-Off = 39 KIAS Speed Over 50ft Obstacle = 50 KIAS

**Throttle Levers:** Full Forward

Runway: Grass

#### Corrections

Headwind: - 5m for each kt (16 ft/kt)
Tailwind: + 15m for each kt (49 ft/kt)
Paved Runway: - 10% to Ground Roll
Runway slope: + 7% to Ground Roll for

| Pressure |              | Distance [m] |         |           |     |     |  |
|----------|--------------|--------------|---------|-----------|-----|-----|--|
| Altitude |              |              | Tempera | ture [°C] |     | ISA |  |
| [ft]     |              | -25          | 0       | 25        | 50  | IJA |  |
| S.L.     | Ground Roll  | 61           | 77      | 95        | 115 | 87  |  |
| 3.L.     | At 50 ft AGL | 185          | 230     | 281       | 337 | 260 |  |
| 1000     | Ground Roll  | 66           | 84      | 103       | 125 | 94  |  |
| 1000     | At 50 ft AGL | 201          | 250     | 305       | 366 | 278 |  |
| 2000     | Ground Roll  | 73           | 91      | 113       | 137 | 100 |  |
| 2000     | At 50 ft AGL | 218          | 272     | 331       | 398 | 297 |  |
| 3000     | Ground Roll  | 79           | 100     | 123       | 149 | 108 |  |
| 3000     | At 50 ft AGL | 237          | 295     | 360       | 432 | 318 |  |
| 4000     | Ground Roll  | 87           | 109     | 135       | 163 | 116 |  |
| 4000     | At 50 ft AGL | 258          | 321     | 392       | 470 | 340 |  |
| 5000     | Ground Roll  | 95           | 119     | 147       | 178 | 125 |  |
| 3000     | At 50 ft AGL | 281          | 349     | 426       | 512 | 364 |  |
| 6000     | Ground Roll  | 104          | 130     | 161       | 195 | 134 |  |
| 8000     | At 50 ft AGL | 306          | 380     | 464       | 557 | 390 |  |
| 7000     | Ground Roll  | 113          | 143     | 176       | 214 | 144 |  |
| 7000     | At 50 ft AGL | 333          | 415     | 506       | 607 | 419 |  |
| 8000     | Ground Roll  | 124          | 157     | 193       | 234 | 155 |  |
| 8000     | At 50 ft AGL | 364          | 452     | 552       | 662 | 449 |  |
| 10000    | Ground Roll  | 150          | 188     | 232       | 282 | 180 |  |
| 10000    | At 50 ft AGL | 433          | 539     | 657       | 789 | 517 |  |





# 5.7. Landing distances

Weight = 599kg/1320lb

Flaps: FULL Corrections

Short Final Approach Speed = 48 KIAS Throttle Levers: Idle Runway: Grass Headwind: - 4m for each kt (13 ft/kt)
Tailwind: + 13m for each kt (43 ft/kt)
Paved Runway: - 10% to Ground Roll
Runway slope: - 3% to Ground Roll for

| Pressure |              | Distance [m] |         |           |     |     |  |  |
|----------|--------------|--------------|---------|-----------|-----|-----|--|--|
| Altitude |              |              | Tempera | ture [°C] |     | ISA |  |  |
| [ft]     |              | -25          | 0       | 25        | 50  | ISA |  |  |
| S.L.     | Ground Roll  | 176          | 193     | 211       | 229 | 204 |  |  |
| 3.L.     | At 50 ft AGL | 339          | 356     | 374       | 392 | 367 |  |  |
| 1000     | Ground Roll  | 182          | 201     | 219       | 237 | 210 |  |  |
| 1000     | At 50 ft AGL | 345          | 364     | 382       | 400 | 373 |  |  |
| 2000     | Ground Roll  | 189          | 208     | 227       | 246 | 216 |  |  |
|          | At 50 ft AGL | 352          | 371     | 390       | 409 | 379 |  |  |
| 3000     | Ground Roll  | 196          | 216     | 236       | 255 | 223 |  |  |
| 3000     | At 50 ft AGL | 359          | 379     | 399       | 418 | 386 |  |  |
| 4000     | Ground Roll  | 203          | 224     | 244       | 265 | 230 |  |  |
| 4000     | At 50 ft AGL | 366          | 387     | 407       | 428 | 393 |  |  |
| 5000     | Ground Roll  | 211          | 232     | 254       | 275 | 237 |  |  |
| 3000     | At 50 ft AGL | 374          | 395     | 417       | 438 | 400 |  |  |
| 6000     | Ground Roll  | 219          | 241     | 263       | 286 | 244 |  |  |
| 0000     | At 50 ft AGL | 382          | 404     | 426       | 449 | 407 |  |  |
| 7000     | Ground Roll  | 228          | 251     | 274       | 297 | 252 |  |  |
| 7000     | At 50 ft AGL | 391          | 414     | 437       | 460 | 415 |  |  |
| 8000     | Ground Roll  | 237          | 260     | 284       | 308 | 260 |  |  |
| 8000     | At 50 ft AGL | 400          | 423     | 447       | 471 | 423 |  |  |
| 10000    | Ground Roll  | 255          | 281     | 307       | 333 | 276 |  |  |
| 10000    | At 50 ft AGL | 418          | 444     | 470       | 496 | 439 |  |  |

# 5.1. Balked landing

Throttle Levers: Full Forward

Weight: 599kg/1320lb

Flaps: *T/O*Speed: 55 KIAS

| Speed: 33 KIAS |      |       |                 |         |         |       |         |         |     |      |  |
|----------------|------|-------|-----------------|---------|---------|-------|---------|---------|-----|------|--|
| Pressure       |      | Rate  | of Clir         | nb [ft, | /min] ( | angle | of clim | ıb [deg | g]) |      |  |
| Altitude       |      | ISA   |                 |         |         |       |         |         |     |      |  |
| [ft]           | -2   | 25    | 5   0   25   50 |         |         |       |         |         |     |      |  |
| S.L.           | 1145 | (12°) | 955             | (9°)    | 785     | (7°)  | 632     | (6°)    | 851 | (8°) |  |
| 1000           | 1072 | (11°) | 884             | (8°)    | 716     | (7°)  | 564     | (5°)    | 794 | (7°) |  |
| 2000           | 1000 | (10°) | 813             | (8°)    | 647     | (6°)  | 496     | (4°)    | 737 | (7°) |  |
| 3000           | 928  | (9°)  | 743             | (7°)    | 578     | (5°)  | 428     | (4°)    | 681 | (6°) |  |
| 4000           | 856  | (8°)  | 673             | (6°)    | 509     | (4°)  | 361     | (3°)    | 624 | (6°) |  |
| 5000           | 784  | (7°)  | 602             | (5°)    | 440     | (4°)  | 293     | (2°)    | 568 | (5°) |  |
| 6000           | 713  | (6°)  | 532             | (5°)    | 371     | (3°)  | 226     | (2°)    | 511 | (4°) |  |
| 7000           | 641  | (6°)  | 462             | (4°)    | 303     | (2°)  | 159     | (1°)    | 455 | (4°) |  |
| 8000           | 570  | (5°)  | 392             | (3°)    | 234     | (2°)  | 92      | (1°)    | 398 | (3°) |  |
| 10000          | 427  | (4°)  | 253             | (2°)    | 98      | (1°)  | -42     | (0°)    | 285 | (2°) |  |





# 5.2. En-route Rate of Climb

|          | Throttle Levers: Full Forward Flaps: UP |             |                  |         |         |         |      |  |  |  |  |
|----------|-----------------------------------------|-------------|------------------|---------|---------|---------|------|--|--|--|--|
| \4/a:=b+ | Pressure                                | Climb Speed |                  | Rate of | Climb [ | ft/min] |      |  |  |  |  |
| Weight   | Altitude                                | $V_{Y}$     | Temperature [°C] |         |         |         | ISA  |  |  |  |  |
| [kg/lb]  | [ft]                                    | [KIAS]      | -25              | 0       | 25      | 50      | ISA  |  |  |  |  |
|          | S.L.                                    | 68          | 1125             | 960     | 813     | 680     | 870  |  |  |  |  |
| Ì        | 2000                                    | 68          | 1000             | 838     | 693     | 563     | 772  |  |  |  |  |
|          | 4000                                    | 68          | 875              | 716     | 573     | 445     | 674  |  |  |  |  |
| 599kg    | 6000                                    | 68          | 750              | 594     | 454     | 328     | 576  |  |  |  |  |
| 1320lb   | 8000                                    | 68          | 626              | 473     | 335     | 211     | 477  |  |  |  |  |
|          | 10000                                   | 68          | 503              | 352     | 217     | 95      | 379  |  |  |  |  |
|          | 12000                                   | 68          | 379              | 231     | 99      | -21     | 281  |  |  |  |  |
|          | 14000                                   | 68          | 256              | 111     | -19     | -136    | 183  |  |  |  |  |
|          | S.L.                                    | 68          | 1271             | 1094    | 935     | 792     | 996  |  |  |  |  |
|          | 2000                                    | 68          | 1136             | 962     | 806     | 666     | 891  |  |  |  |  |
|          | 4000                                    | 68          | 1002             | 830     | 677     | 539     | 785  |  |  |  |  |
| 550kg    | 6000                                    | 68          | 868              | 699     | 549     | 413     | 680  |  |  |  |  |
| 1210lb   | 8000                                    | 68          | 734              | 569     | 421     | 288     | 574  |  |  |  |  |
|          | 10000                                   | 68          | 601              | 439     | 293     | 163     | 468  |  |  |  |  |
|          | 12000                                   | 68          | 468              | 309     | 166     | 38      | 363  |  |  |  |  |
|          | 14000                                   | 68          | 336              | 180     | 40      | -86     | 257  |  |  |  |  |
|          | S.L.                                    | 68          | 1443             | 1250    | 1078    | 922     | 1145 |  |  |  |  |
|          | 2000                                    | 68          | 1296             | 1107    | 937     | 785     | 1030 |  |  |  |  |
|          | 4000                                    | 68          | 1150             | 964     | 797     | 647     | 915  |  |  |  |  |
| 500kg    | 6000                                    | 68          | 1004             | 821     | 658     | 510     | 800  |  |  |  |  |
| 1100lb   | 8000                                    | 68          | 859              | 679     | 518     | 373     | 685  |  |  |  |  |
|          | 10000                                   | 68          | 714              | 537     | 380     | 237     | 570  |  |  |  |  |
|          | 12000                                   | 68          | 570              | 396     | 241     | 102     | 455  |  |  |  |  |
|          | 14000                                   | 68          | 426              | 256     | 104     | -33     | 340  |  |  |  |  |



## 5.3. Cruise Performances



**CAUTION** Engine speed over 5500 RPM is restricted to 5min.

# <u>DATA COMPUTED - DEDUCTION OF RESERVE IS UNDER</u> <u>PILOT'S RESPONSIBILITY</u>

| <u>Weight = 600 kg</u>      |       |       |           |       |          |  |  |  |  |  |
|-----------------------------|-------|-------|-----------|-------|----------|--|--|--|--|--|
| CORRECTIONS                 |       |       |           |       |          |  |  |  |  |  |
|                             | KTAS  | Fuel  | Endurance | Range | Specific |  |  |  |  |  |
|                             |       | Cons. |           |       | Range    |  |  |  |  |  |
| For each +15°C of OAT       | -2%   | -2.5% | +2%       | +1%   | +1%      |  |  |  |  |  |
| For each -15°C of OAT       | +1%   | +3%   | -4%       | -2%   | -1%      |  |  |  |  |  |
| For -100kg (45lb) of weight | +3.3% | -     | -         | +3%   | +4%      |  |  |  |  |  |

#### **CRUISE PERFORMANCE**

| Pressure<br>Altitude<br>[ft] | OAT<br>ISA<br>[deg C] | Engine<br>RPM | KTAS | Fuel<br>Cons.<br>Gal/<br>hr | Endurance<br>[hr:mm] | Range<br>[nm] | Specific<br>Range<br>[nm/Gal] |
|------------------------------|-----------------------|---------------|------|-----------------------------|----------------------|---------------|-------------------------------|
|                              |                       | 5800          | 120  | 7.0                         | 4:10                 | 494           | 17                            |
|                              |                       | 5500          | 114  | 5.7                         | 5:00                 | 574           | 20                            |
|                              |                       | 5300          | 109  | 4.9                         | 5:50                 | 640           | 22                            |
| 0                            | 15                    | 5100          | 104  | 4.2                         | 6:50                 | 711           | 25                            |
|                              |                       | 4800          | 97   | 3.4                         | 8:30                 | 824           | 29                            |
|                              |                       | 4600          | 92   | 3.0                         | 9:40                 | 885           | 31                            |
|                              |                       | 4400          | 87   | 2.7                         | 10:40                | 922           | 32                            |





| _     |    | 5800 | 121 | 6.6 | 4:20  | 529 | 19 |
|-------|----|------|-----|-----|-------|-----|----|
|       |    | 5500 | 113 | 5.4 | 5:20  | 602 | 21 |
|       |    | 5300 | 108 | 4.6 | 6:10  | 669 | 23 |
| 2000  | 11 | 5100 | 103 | 4.0 | 7:10  | 740 | 26 |
|       |    | 4800 | 96  | 3.2 | 8:50  | 853 | 30 |
|       |    | 4600 | 91  | 2.9 | 10:00 | 907 | 31 |
|       |    | 4400 | 86  | 2.6 | 11:00 | 940 | 33 |
|       |    | 5800 | 120 | 6.2 | 4:40  | 557 | 19 |
|       |    | 5500 | 113 | 5.1 | 5:40  | 636 | 22 |
|       | 7  | 5300 | 108 | 4.4 | 6:30  | 704 | 25 |
| 4000  |    | 5100 | 103 | 3.8 | 7:30  | 774 | 27 |
|       |    | 4800 | 95  | 3.1 | 9:10  | 872 | 30 |
|       |    | 4600 | 90  | 2.8 | 10:10 | 923 | 32 |
|       |    | 4400 | 85  | 2.6 | 11:10 | 951 | 33 |
| _     |    | 5500 | 112 | 4.9 | 5:50  | 662 | 23 |
|       |    | 5300 | 107 | 4.2 | 6:50  | 732 | 25 |
| 6000  | 3  | 5100 | 102 | 3.6 | 7:50  | 803 | 28 |
| 8000  |    | 4800 | 94  | 3.0 | 9:30  | 899 | 31 |
|       |    | 4600 | 89  | 2.7 | 10:30 | 940 | 33 |
|       |    | 4400 | 84  | 2.5 | 11:30 | 963 | 33 |
|       |    | 5500 | 111 | 4.6 | 6:10  | 691 | 24 |
|       |    | 5300 | 106 | 4.0 | 7:10  | 754 | 26 |
| 8000  | -1 | 5100 | 101 | 3.5 | 8:10  | 825 | 29 |
| 8000  | -1 | 4800 | 94  | 2.9 | 9:50  | 925 | 32 |
|       |    | 4600 | 89  | 2.7 | 10:50 | 962 | 33 |
|       |    | 4400 | 84  | 2.5 | 11:40 | 979 | 34 |
|       |    | 5300 | 105 | 3.9 | 7:30  | 783 | 27 |
|       |    | 5100 | 100 | 3.4 | 8:30  | 849 | 30 |
| 10000 | -5 | 4800 | 93  | 2.9 | 10:00 | 935 | 33 |
|       |    | 4600 | 88  | 2.6 | 11:00 | 966 | 34 |
|       |    | 4400 | 83  | 2.5 | 11:40 | 975 | 34 |

intentionally left in blank





## 6. Section No. 6 - Weight and Balance

This section describes the procedure for establishing the basic empty weight and the moment of the aircraft. Loading procedure information is also provided.

#### WARNING

Aircraft must be operated in accordance with the limits concerning the maximum takeoff weight and CG travel reported in Sect.2

### WARNING

It is pilot's responsibility to check that the weight and CG are within the limits

## 6.1. Weighing Procedures

## 6.1.1. Preparation

- Carry out the weighing inside a closed hangar to avoid the wind to modify the scales reading;
- Remove from the cabin any foreign object;
- Make sure that POH and aircraft documents are on board;
- Align nose wheel;
- Make sure that there is only the not-usable fuel in the tanks (0.5lt);
- Make sure that all the operating fluids are to operating levels;
- Make sure that the seats are in the most FWD position;
- Retract the flaps;
- Engage the parking brake;
- Close the canopy;

- Place the scales under each wheel. Lift the aircraft by pushing from the bottom wing skin in correspondence with the rib;
- Level the aircraft. Level can be placed inside the baggage compartment.

## 6.1.2. Levelling

- Level the aircraft with the reference to the baggage compartment floor. You can monitor the spirit-level through the baggage compartment door;
- If needed, adjust the aircraft attitude deflating the nose tire until the aircraft is perfectly levelled.

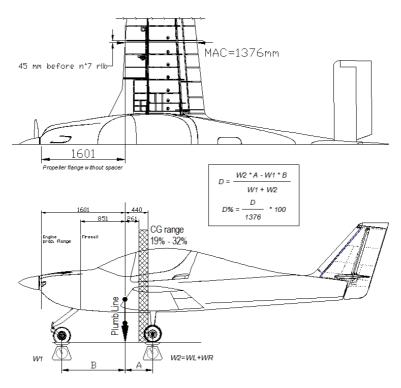
## 6.1.3. Weights Record

- Record the weight shown on each scale;
- Repeat the weighing if necessary to be safe on the given value;

#### 6.2. C.G. Location determination

- With the aircraft leveled, not necessarily during the weighing, drop a plumb bob tangent to the wing leading edge exactly 45mm before the Left and Right wing 7<sup>th</sup> rib as shown in the next picture;
- Stretch a taught line on the hangar floor between the LH and RH in order to have the possibility to measure the distances "A" and "B" as shown in the next picture;
- Record the "A" and "B" distances, which will be useful also for future weighing.

#### NOTE


Before the aircraft leaves the factory, and as soon as it is reassembled to the local dealer, the weighing report is filled and the distances for the S/N are recorded





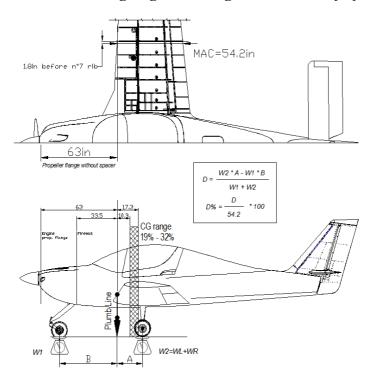


# 6.2.1. Weighing scheme - general scheme [mt]



# **CAUTION**

Always use CONSISTENT units to compute the W&B


[kg] for weights and [mt] for distances or [lb] for weights and [in] for distances





# POH

# 6.2.2. Weighing scheme - general scheme [in]



## **CAUTION**

Always use CONSISTENT units to compute the W&B

[kg] for weights and [mt] for distances or [lb] for weights and [in] for distances





# 6.2.3. Weighing report - S/N:

| Tecnam Astore                  | Weighing n                       |         | Date:                     | /                 | /    |
|--------------------------------|----------------------------------|---------|---------------------------|-------------------|------|
| Nose Wheel weight              | W <sub>1</sub> =                 | Lef     | t dist. "A"               | $A_{L}$           | =    |
| LH Main wheel weight           | $W_L = \underline{\hspace{1cm}}$ | Righ    | t dist. "A"               | $A_R$             | =    |
| RH Main wheel weight           | W <sub>R</sub> =                 | $(A_I)$ | $\frac{(A+A_R)}{2}$       | A                 | =    |
| $W_2 = W_L + W_R$              | $W_2 =$                          |         | Dist. "B"                 | В                 | =    |
| Empty weight $W_e = W_1 + W_2$ | W <sub>e</sub> =                 | Empty   | y weight                  |                   |      |
| $M_1 = W_1 \cdot B$            | M <sub>1</sub> =                 |         |                           |                   |      |
| $M_2 = W_2 \cdot A$            | M <sub>2</sub> =                 |         |                           |                   |      |
| $M = M_2 - M_1$                | M =                              | Empt    | y wt. mome                | nt <sup>(1)</sup> |      |
|                                |                                  |         |                           |                   |      |
| $D = \frac{M}{W_e}$            | D=                               | D%      | $= \frac{D}{MAC} \cdot 1$ | 00                | D =% |
| Maximum Take Off W             |                                  | 600kg   |                           | 1320lb            |      |
| Authorized Signa               | nture (see AMM)                  |         |                           |                   |      |

<sup>&</sup>lt;sup>(1)</sup> This Moment is computed around the MAC leading edge. In order to know the Moment around the datum (prop. flange without the spacer) the value is:

$$\begin{split} M_{datum} &= (D+1.601mt) \cdot W_e = \underline{\hspace{1cm}} kgmt \\ M_{datum} &= (D+63in) \cdot W_e = \underline{\hspace{1cm}} lbin \end{split}$$





## 6.2.4. Loading computation Chart

Every Tecnam Astore is provided with an Apple iPad Mini with a preloaded app. One of its features is that the CoG position for each payload distribution, given the inputs data from the weighing report, can be easily displayed. By the way, a classic method is provided in the following table, which can be printed and used before each flight.

| Loading Co.     | Loading Computation Chart (use kg and mt or lb and in) |    |                                              |        |  |  |  |  |
|-----------------|--------------------------------------------------------|----|----------------------------------------------|--------|--|--|--|--|
|                 | Weigh                                                  | nt | Arm                                          | Moment |  |  |  |  |
|                 | $W_{e}$                                                |    |                                              | M      |  |  |  |  |
| Empty data      |                                                        |    |                                              |        |  |  |  |  |
| Fuel (1)        |                                                        |    | 0.255mt (10in)*                              |        |  |  |  |  |
| Pil&Passenger   |                                                        |    | 0.417mt (16in)*                              |        |  |  |  |  |
| Baggage         |                                                        |    | 1.396mt (55in)*                              |        |  |  |  |  |
| Take Off Weight |                                                        |    | TOW                                          |        |  |  |  |  |
| Total Moment    |                                                        |    | MOM                                          |        |  |  |  |  |
|                 |                                                        |    |                                              |        |  |  |  |  |
| Distance        | e (%MAC)                                               |    | $\frac{DM}{W} \cdot \frac{1}{MAC} \cdot 100$ | %      |  |  |  |  |

 $<sup>^{(1)}</sup>$  Fuel weight is 0.72kg/lt or 6lb/USGal

## **WARNING**

Verify that the TOW and CoG location are within the limits given in the Section no.2 - Limitations

<sup>\*</sup> Distances from MAC leading edge

# 6.2.5. Payload moments

The following tables show the moments in kgm and lbin for several values of each payload item. This simplifies the filling of table reported in the §6.2.4.





| Pilot + Passenger |       |  |     |      |  |  |  |
|-------------------|-------|--|-----|------|--|--|--|
| kg                | kgm   |  | lb  | lbin |  |  |  |
| 20                | 8,3   |  | 44  | 705  |  |  |  |
| 30                | 12,5  |  | 66  | 1057 |  |  |  |
| 40                | 16,7  |  | 88  | 1410 |  |  |  |
| 50                | 20,9  |  | 110 | 1762 |  |  |  |
| 60                | 25,0  |  | 132 | 2115 |  |  |  |
| 70                | 29,2  |  | 154 | 2467 |  |  |  |
| 80                | 33,4  |  | 176 | 2819 |  |  |  |
| 90                | 37,5  |  | 198 | 3172 |  |  |  |
| 100               | 41,7  |  | 220 | 3524 |  |  |  |
| 110               | 45,9  |  | 242 | 3877 |  |  |  |
| 120               | 50,0  |  | 264 | 4229 |  |  |  |
| 130               | 54,2  |  | 286 | 4581 |  |  |  |
| 140               | 58,4  |  | 308 | 4934 |  |  |  |
| 150               | 62,6  |  | 330 | 5286 |  |  |  |
| 160               | 66,7  |  | 352 | 5639 |  |  |  |
| 170               | 70,9  |  | 374 | 5991 |  |  |  |
| 180               | 75,1  |  | 396 | 6344 |  |  |  |
| 190               | 79,2  |  | 419 | 6696 |  |  |  |
| 200               | 83,4  |  | 441 | 7048 |  |  |  |
| 210               | 87,6  |  | 463 | 7401 |  |  |  |
| 220               | 91,7  |  | 485 | 7753 |  |  |  |
| 230               | 95,9  |  | 507 | 8106 |  |  |  |
| 240               | 100,1 |  | 529 | 8458 |  |  |  |
| 250               | 104,3 |  | 550 | 8800 |  |  |  |

|        |      | Fuel |       |      |
|--------|------|------|-------|------|
| liters | kgm  |      | USGal | lbin |
| 10     | 1,8  |      | 5     | 300  |
| 20     | 3,7  |      | 10    | 600  |
| 30     | 5,5  |      | 15    | 900  |
| 40     | 7,3  |      | 20    | 1200 |
| 50     | 9,2  |      | 25    | 1500 |
| 60     | 11,0 |      | 30    | 1800 |
| 70     | 12,9 |      | 29    | 1740 |
| 80     | 14,7 |      |       |      |
| 90     | 16,5 |      |       |      |
| 100    | 18,4 |      |       |      |
| 110    | 20,2 |      |       |      |

|    | Baggages |  |    |      |  |  |  |  |  |
|----|----------|--|----|------|--|--|--|--|--|
| kg | kgm      |  | lb | lbin |  |  |  |  |  |
| 5  | 7,0      |  | 10 | 550  |  |  |  |  |  |
| 10 | 14,0     |  | 20 | 1100 |  |  |  |  |  |
| 15 | 20,9     |  | 30 | 1650 |  |  |  |  |  |
| 20 | 27,9     |  | 40 | 2200 |  |  |  |  |  |
| 25 | 34,9     |  | 50 | 2750 |  |  |  |  |  |
| 30 | 41,9     |  | 70 | 3850 |  |  |  |  |  |
| 35 | 48,9     |  | 77 | 4235 |  |  |  |  |  |



# 6.2.6. Equipment List

This paragraph shows the position and weight of main equipment components in order to make the knowledge of their respective position easier to determinate. In order to supply to the operator a comprehensive method to determine the position of other components not in this list, the following picture shows the aircraft side view with dimensions from the engine propeller flange. In order to verify the actual CoG and empty weight in reference with equipment list, the  $\underline{M}_{datum}$  should be used because referenced to the propeller flange without spacer. All measures are positive going toward the tail, while the propeller/spinner and spacer are the only negative measures.

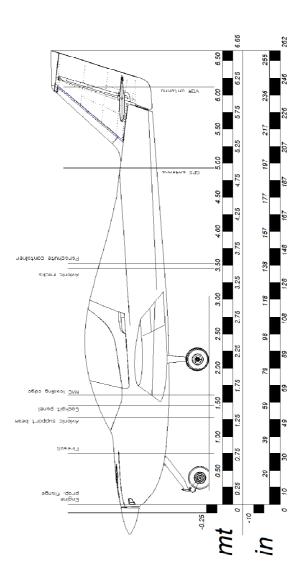
If some known optional is missing, this means that the relevant W&B information are given in the equipment Supplement (Suppl. in the Weight and Arm columns). Also, a table to record the weight and balancing changes is provided in order to be fulfilled every time a mass item affecting the weight and balance is added/removed.

S = Standard equipment

S-M = Standard equipment - it is forbidden to fly without this

equipment under any conditions

O-VFRN = Optional equipment - it is forbidden to fly without this


equipment under VFR-N conditions

O = Optional equipment

#### NOTE

Local CAA may require additional equipment as Mandatory to conduct flights such as ELT, Radio and Transponder units









| ITEM  | Description                           | Standard   | Weight | Arm    |
|-------|---------------------------------------|------------|--------|--------|
|       |                                       |            | F1 7   | [4]    |
|       |                                       | Optional   | [kg]   | [mt]   |
|       |                                       | Mandatory* |        |        |
|       | 21 - AIR CONDITIONING                 |            | 0 1    | 0 1    |
| Air c | ond. Flycool                          | 0          | Suppl. | Suppl. |
|       |                                       |            |        |        |
|       | 22 - AUTO FLIGHT                      |            | 0 1    | 0 1    |
| Dyno  | on autopilot                          | 0          | Suppl. | Suppl. |
|       | Pro Pilot autopilot                   | 0          | Suppl. | Suppl. |
| Garn  | nin Autopilot                         | 0          | Suppl. | Suppl. |
|       |                                       |            |        |        |
|       | 23 - COMMUNICATIONS                   | _          | 0.60   |        |
|       | A240 Audio Panel computer             | 0          | 0.68   | 1.32   |
|       | A340 Audio Panel computer             | 0          | 0.80   | 1.32   |
|       | 255A COM/NAV computer                 | 0          | 1.60   | 1.32   |
|       | 00 VOR indicator                      | 0          | 0.64   | 1.35   |
|       | 200 COM computer                      | 0          | 0.97   | 1.32   |
|       | 225A computer                         | 0          | 1.40   | 1.32   |
|       | 327 mode C Transponder computer       | 0          | 1.50   | 1.32   |
|       | 328 mode S Transponder computer       | 0          | 1.90   | 1.32   |
|       | 330 mode S Transponder computer       | 0          | 1.90   | 1.32   |
|       | 796+Airgizmos                         | 0          | 0.97   | 1.50   |
| Dyno  | on SV-XPNDR-261 mode S (rack)         | 0          | 0.40   | 3.53   |
| SV-C  | COM-C25 COM                           | 0          | 0.16   | 1.35   |
|       | NTERCOM-2S                            | 0          | 0.20   | 1.32   |
| SV-A  | ADSB-470 UAT Traffic and Weather Rec. | 0          | 0.40   | 1.27   |
| ADS   | B antenna                             | 0          | 0.10   | 3.00   |
| Spea  |                                       | 0          | 0.15   | 3.34   |
| Micr  | ophone                                | 0          | 0.10   | 1.94   |
| COM   | I1 antenna                            | 0          | 0.10   | 2.54   |
| XTR   | antenna                               | 0          | 0.10   | 1.83   |
| GPS   | antenna                               | 0          | 0.15   | 4.93   |
| VOR   | antenna                               | 0          | 0.20   | 6.12   |
|       |                                       |            |        |        |
|       | 24 - ELECTRICAL POWER                 |            |        |        |
|       | nal alternator - 40A                  | 0          | 3.50   | 0.09   |
| Batte | ry - Spark500*                        | 0          | 4.90   | 0.70   |
| Batte | ry - Alliant X3                       | S - M      | 1.00   | 0.70   |
|       | nal Ground Power Receptacle           | 0          | 0.40   | 2.67   |
|       |                                       |            |        |        |
|       |                                       |            |        |        |





| 25 - EQUIPMENT/FURNISHINGS                  |            |         |      |
|---------------------------------------------|------------|---------|------|
| Seat (LH or RH) - each                      | S - M      | 4.10    | 2.02 |
| Seat belt - each                            | S - M      | 1.00    | 2.20 |
| Baggage net (mandatory if carrying load)    | 0          | 0.60    | 2.97 |
| POH                                         | S - M      | 0.40    | 2.63 |
| Ballistic Recovery System                   | 0          | 13.0    | 2.53 |
| Hammer                                      | S          | 0.30    | 2.68 |
| Armrest                                     | 0          | 0.60    | 2.13 |
| First aid box                               | S          | 0.6     | 2.13 |
| ELT 406Mhz (remote unit)                    | 0          | 1.00    | 2.28 |
|                                             |            |         |      |
| 26 - FIRE PROTECTION                        |            |         |      |
| Fire extinguisher                           | S          | 1.50    | 1.57 |
| · ·                                         |            |         |      |
| 32 - LANDING GEAR                           |            |         |      |
| Nose wheel fairing                          | S          | 1.50    | 0.39 |
| Main wheel fairing (each)                   | S          | 1.50    | 2.21 |
| NLG tire and tube (Airtrac)                 | S - M      | 2.0+0.5 | 0.39 |
| NLG tire and tube (Goodyear)                | 0          | 2.6+0.5 | 0.39 |
| MLG tire and tube (Airtrac - each T+T)      | S - M      | 2.0+0.5 | 2.13 |
| MLG tire and tube (Goodyear - each T+T)     | 0          | 2.6+0.5 | 2.13 |
| ` ` `                                       |            |         |      |
| 33 - LIGHTS                                 |            |         |      |
| Strobe & NAV Lights (both LH/RH) & switches | O-VFRN     | 0.25    | 1.98 |
| Landing light bulb & switch                 | O-VFRN     | 0.30    | 1.66 |
| Instrument lights, switch & dimmer          | O-VFRN     | 0.30    | 1.37 |
| , , , , , , , , , , , , , , , , , , ,       |            |         |      |
| 34 - NAVIGATION                             |            |         |      |
| Compass                                     | S - M      | 0.30    | 1.37 |
| Airspeed indicator                          | S - M      | 0.40    | 1.37 |
| Altitude indicator                          | S - M      | 0.40    | 1.37 |
| Vertical Speed indicator                    | S          | 0.40    | 1.37 |
| Oblò EFIS                                   | 0          | 0.45    | 1.38 |
| Turn and bank indicator                     | 0          | 1.40    | 1.33 |
| Chronometer                                 | 0          | 0.40    | 1.38 |
| OAT indicator                               | 0          | 0.30    | 1.38 |
| Attitude - electric                         | O - VFRN** | 1.40    | 1.33 |
| Directional - electric                      | 0          | 1.40    | 1.33 |
| Mini iPad Apple                             | S          | 0.36    | 1.49 |
| Dynon SV1000 display (each)                 | 0          | 1.40    | 1.41 |
| Dynon SV700 display (each)                  | 0          | 1.15    | 1.41 |





| GARMIN G3X display (each)         | 0       | 0.80 | 1.41  |
|-----------------------------------|---------|------|-------|
|                                   |         |      |       |
| 61 - PROPELLER                    |         |      |       |
| Sensenich W68T2ET-70J             | S - M   | 4.70 | -0.12 |
| Sensenich 2A0R5R70EN              | 0       | 5.00 | -0.12 |
| Sensenich 3B0R5R68C               | 0       | 4.35 | -0.12 |
| Spinner plate                     | S       | 0.40 | -0.06 |
| Spacer                            | S - M   | 1.50 | -0.05 |
| Spinner                           | S       | 0.30 | -0.16 |
|                                   |         |      |       |
| 71 - POWERPLANT                   |         |      |       |
| Muffler heat exchanger            | S       | 0.35 | 0.44  |
|                                   |         |      |       |
| 77 - ENGINE INDICATING            |         |      |       |
| MAP indicator                     | 0       | 0.40 | 1.38  |
| EMS display (Dynon, Garmin or TL- | S - M   | 0.60 | 1.38  |
| Elektronics)                      |         |      |       |
|                                   |         |      |       |
| 78 - EXHAUST                      |         |      |       |
| Exhaust system incl. muffler      | S - M   | 4.60 | 0.344 |
|                                   |         |      | -     |
| 79 - OIL                          |         | 0.00 | 0.255 |
| Thermostatic oil valve            | 0       | 0.80 | 0.355 |
| Oil cooler                        | S - M   | 0.80 | 0.277 |
| 82 - WATER INJECTION              |         |      | -     |
| Thermostatic coolant valve        | 0       | 0.80 | 0.355 |
| Water cooler                      | S-M     | 1.00 | 0.333 |
| water cooler                      | S - IVI | 1.00 | 0.131 |

<sup>\*</sup>Spark 500 is mandatory if the aircraft is equipped with Rotax 912i Series. The i Series is in fact not able to adequately re-charge the Alliant 13.2V battery.

<sup>\*\*</sup>The use of adequate attitude indicator is mandatory to fly under VFR-N conditions. Check your S/N equipment list in order to be sure that it includes a source for attitude indication (EFIS with ADAHRS or single attitude indicator instrument).

TECNAM do not consider the GPS data for attitude indication as adequate to replace a gyro or solid state gyroscope operated instrument.

## 6.2.7. Change of equipment RECORD

The following table, according with the chapter 6.2.6 requirements, is used to record any change, removal or installation of any component from/in the aircraft. Any of this change can be recorder in order to always store the aircraft configuration without the need to repeat the weighing and balancing, unless a new weighing is necessary.

| Tecnam Astore aircraft |                                                                          |     |              |                      |     | S/N                 |     |     |                                    |     |      |
|------------------------|--------------------------------------------------------------------------|-----|--------------|----------------------|-----|---------------------|-----|-----|------------------------------------|-----|------|
| Date                   | ate Item Added (IN) or Re- moved (OUT) Description of item added/removed |     | Fi           | Fill if ADDED<br>(+) |     | Fill if REMOVED (-) |     |     | Final e.ty<br>weight and<br>Moment |     |      |
|                        | IN                                                                       | OUT |              | Wt.                  | Arm | Mom.                | Wt. | Arm | Mom.                               | Wt. | Mom. |
|                        |                                                                          |     | As delivered |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |
|                        |                                                                          |     |              |                      |     |                     |     |     |                                    |     |      |



| Tecnam Astore aircraft |                                  |     | ircraft S/N                       |                   |     |      |                     |     |      |                                    |      |
|------------------------|----------------------------------|-----|-----------------------------------|-------------------|-----|------|---------------------|-----|------|------------------------------------|------|
| Date                   | Item Added (IN) or Removed (OUT) |     | Description of item added/removed | Fill if ADDED (+) |     | Fill | Fill if REMOVED (-) |     |      | Final e.ty<br>weight and<br>Moment |      |
|                        | IN                               | OUT |                                   | Wt.               | Arm | Mom. | Wt.                 | Arm | Mom. | Wt.                                | Mom. |
|                        |                                  |     | As delivered                      |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |
|                        |                                  |     |                                   |                   |     |      |                     |     |      |                                    |      |

### NOTE

When an item is added, the moment is always positive unless the item is pertinent to the propeller. In this case, the removal of a propeller will result in a positive moment, while the installation of a new one results in a negative moment





## 7. Section No. 7 - Description of Airplane and Systems

#### 7.1. General

The Tecnam Astore is a low wing, two-place, single-engine airplane equipped with tricycle landing gear. The all metal airframe structure is complemented by the selective use of an epoxy reinforced matrix of carbon/glass fiber for the upper radome and fairings.

The main landing gear consists of two 7075T6 light alloy springs which are hinged inside the fuselage in order to maximize the wheel deflection and energy absorption efficiency. These springs are supported by robust machined components which spread the load directly onto the main bulkheads. Two rawhide liners are inserted between each spring-leaf and the external machined beam. Two bolts secure the individual spring-leaf to the edge of the beam via a light alloy clamp while a single bolt secures the inboard end of the leaf-spring to the hinge and inner machined beam. The nose gear is free castering and is supported by an oleo-pneumatic shock absorber connected directly to the firewall. Differential toe brakes for steering are standard for both pilot and co-pilot with redundant brake master cylinders (4 in total).

The horizontal tail is made up of a stabilizer and elevator with tip balancing horns. All the control surfaces, except for the flaps and trim tab, are balanced, and all the surfaces, except for the rudder and fuse-lage aileron line, are controlled via push-pull rods. Standard engine for this manual is the Rotax 912iS2 but the 912ULS2 and turbocharged 914UL2 version are also available. The standard propeller is a two blade fixed pitch wooden-composite wrapped Sensenich, with compo-

site made propellers from the same brand also available in two and three bladed versions.

The total usable fuel is 29 Gal (109lt) while the entire fuel system runs below the cabin structure, protecting the occupants from the fuel lines, which consist of rigid hoses and AN fittings. The canopy forms an integral part of the upper radome sliding forward and aft with final closing achieved by pulling the canopy vertically down onto an automotive-type seal. Three latches and 4 pins secure the canopy to the radome ensuring the best sound proofing possible.

The Cabin offers newly designed seats and seat rails which are easily operated and adjustable fore and aft via a single handle with a reinforced area between the rails to make cabin access even easier. A roomy baggage compartment accommodates voluminous items with both external and internal access. A strong automotive seal is used on the baggage door and a courtesy lamp illuminates when this big door is opened. A newly designed and wide cockpit panel provides the largest choice of avionics. The avionics package always includes an iPad Mini with a built in application called "Tecnam Astore Owner app" containing a lot of useful information.





#### 7.2. Airframe

The load carrying airframe is entirely made by light alloy with a wide use of 3D shaped sheet metal and machined components. The wing is attached via a carry through, made by a 2024T3 billet milled and bolted inside two main bulkheads. Firewall is directly riveted on the first frame via stainless steel rivets and is made by 0.4mm sheet. The tailcone is built also in light alloy and is secured to the cabin struture by 4 caps and riveted side/lower skins. The airframe includes the formed structure for the baggage door frame and the parachute ropes ones. These, when the parachute is installed, completely hide the ropes giving the airplane an unique shape. All the front cabin section is riveted with flush 3.2mm solid rivets, unless some main spars such as the lower ones which are riveted using protruding head rivets. The tailcone is riveted using pop rivets while the last bulckhead, carrying the loads coming from the tails, is riveted using 4mm solid rivets.

As written in the general description, the tails are made by light alloy and they are both made by fixed and movable surfaces, both balanced for elevator and rudder structures. All the hinges are made from machined 2024T3 series light alloy and rotate around ball bearings.

# 7.3. Flight controls

#### 7.3.1. Elevator

The elevator control is made by push pull rods: a cabin rod connect directly the stick assembly with the intermediate lever while another rod connect the lever with the elevator. Both rods are made by 32mm light alloy tube with two ends made from billet which incorporate the ball bearing ends. The stick assembly is hinged on the third frame and is fully accessible and removable via dedicated access panels.





The movable surface is horn balanced at tips and rotates around 5 hinges with a central one incorporating also the control connection plate. The elevator is provided by a left side mounted, electrically operated trim tab with hat switch control on both left and right stick and a pilot/co-pilot selector switch.

#### 732 Rudder

Rudder control is made by 2.5mm steel wire which connect the rudder pedals directly to the rudder, via 4 pulleys which deviate the path properly. A forward mounted rigid closing circuit allows the mechanical connection with LH and RH pedals. The control surface is entirely made by light alloy unless the lower part which is a carbon fiber reinforced matrix component. It rotates around two ball bearings ans is provided by a fixed-ground adjustable trim tab.

## 7.3.3. **Aileron**

Aileron control, as Tecnam use to make on all Tecnam models, is made by two separate loops: a cabin closed-circuit, which connects the control stick with the rear rod, made by 2.5mm steel wire, and a wing-located line made by two control rods. This allow an easier assembly of wings without rigging the cabin wires and simply connecting the wing rods with the cabin one via a couple of bolts.

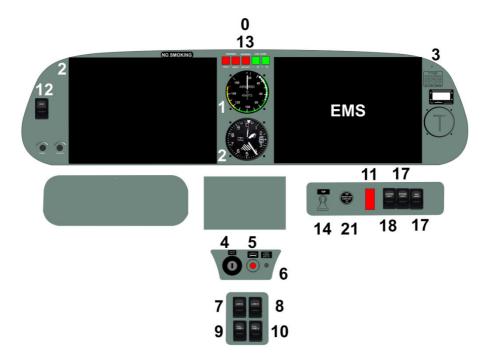
# 7.3.4. **Flaps**

Flap surface is controlled by an electrically operated actuator which acts directly on a torque tube connecting the LH and RH flap surfaces. They are slotted-type and entirely made by light alloy. The flap control switch is located on the cockpit panel and is easily accessible from the pilot and co-pilot. The flap actuator is accessible via a dedicated access panel and is possible to regulate it acting on two end-travel

switches. The flap position transmitter is located directly on the flap torque tube and shows the flap position directly on the EFIS/EMS monitor

## 7.4. Instrument panel

The instrument panel is a wide light alloy sheet metal incorporating the flight instruments, the EMS and the avionics bay. In the standard 912iS basic configuration, the instrument panel is provided by:


- (0) Magnetic compass;
- (1) Airspeed indicator;
- (2) Altimeter;
- (3) Digital EMS which incorporates:
  - rpm indicator;
  - hobbs recorder;
  - oil press;
  - oil temp;
  - CHT;
  - fuel press;
  - voltmeter;
  - elevator trim position indicator;
  - flap position indicator;
  - LH/RH fuel level indicator;
- (4) Master key;
- (5) Starter button;
- (6) Start Power Switch;
- (7/8) Lane A & B switches;
- (9/10) Fuel Pump 1 & 2 switches;

- (11) Back up battery switch;
- (12) EFIS/EMS Master switch;
- (13) Annunciator Panel;
- (14) Flap switch;
- (17) Landing light/NAV lights switches;
- (18) Strobe light switch;
- (21) Cabin heat knob;

(not shown) iPad mini;

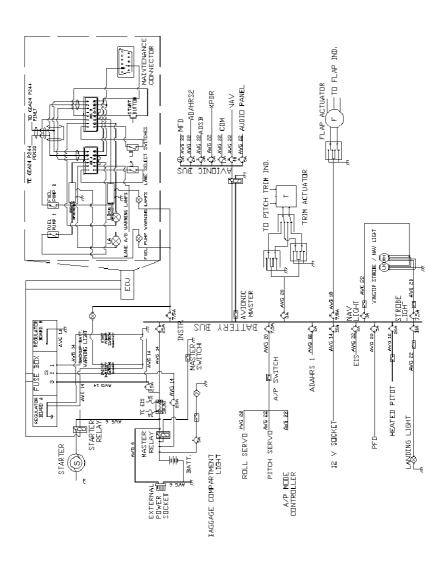
Refer to the relevant Supplement if additional equipment is installed. The following picture shows the basic panel configuration with 912iS engine interfaces:





# 7.5. Engine and Propeller

Standard engine of this POH is the fuel injected Rotax 912iS. The standard propeller is a two blade fixed pitch wooden-composite wrapped Sensenich. All the allowed propellers are installed using a spacer. The standard installation includes the cabin heat system and cold air intake for cabin. The engine cowling is provided by two gullwing doors which can be opened via two camloc per side. For further description of engine and related systems, refer to the Aircraft Maintenance Manual.


# 7.6. Electrical system

The electrical system schematic for this POH equipment is shown in the picture below. The schematic also includes equipment which are managed via dedicated Supplement as they are optionally provided. Refer to the Section No.10 - Marking and Placards, to know more about the breaker panel and their related value and function.

intentionally left in blank



# POH







## 8. Section No. 8 - Handling & Servicing

#### 8.1. General

This section contains factory-recommended procedures for proper ground handling and routine care and servicing. It also identifies certain inspection and maintenance requirements. It is recommended to follow a planned schedule of lubrication and preventive maintenance based on climatic and flying conditions encountered locally.

The customer/operator is responsible to monitor the mail address supplied and the Tecnam Login page for being updated about:

- Latest revisions of manuals;
- Issue of Notification Letter;
- Issue of Service Bulletins:
- Issue of Safety Alerts;

The direct link to the Tecnam login page is:



http://www.tecnam.com/Login.aspx

Modifications on the aircraft not approved by Tecnam via a Service Bulletin or Job Card, or not performed by people and figures identified by Tecnam, could reduce the safety of the flight and for this reason any operation not allowed by Tecnam, or Maintenance practices not followed as per Tecnam Astore AMM, will void the warranty on the airplane.

## 8.2. Aircraft inspection intervals

Scheduled inspections must be performed in accordance with the instructions addressed on the Aircraft Maintenance Manual and performed by the authorized figures indicated. Independently from the aircraft flight hours, an annual inspection has to be performed (yearly).

All required inspections on the airframe and aircraft systems are shown in the aircraft maintenance manual. Be aware that copies in latest revisions of engine, propeller and avionics maintenance manual should be part of the "aircraft files".

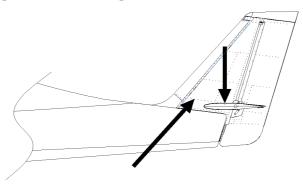
## **WARNING**

unscheduled inspections/maintenance tasks are necessary when one or more of the following conditions occur:

- 1. Emergency/Hard Landing
- 2. Damage of propeller
- 3. Engine fire
- 4. Lightning
- 5. Flap actuating overspeed (more than 80kIAS from 0 to T/O position, more than 75kIAS from T/O to LND position)
- 6. Any other damage on the airframe and systems

## 8.3. Aircraft changes or repairs

The AMM addresses any maintenance task to the proper level of certification such as owner, A&P, repairman and repair station. When






changes or repairs should be accomplished using a Job Card or Service Bulletin, the level of certification is addressed.

# 8.4. **Towing**

The easiest way to tow the aircraft is to pull it from the propeller root. The free castering nose wheel allow easy changes of direction during the aircraft towing. In order to allow maneuvers in small areas, such as inside an hangar, it is possible to push the aircraft down on the stabilizer root to lift the nose gear and rotate the aircraft pushing on the front fin spar as shown in the picture.



# 8.5. Parking and tie-down

Park the aircraft into the wind, engage the parking brake when chokes are not available. For prolongated parking time (more than one day), it is preferable to use chocks to avoid leaving the brake system in pressure. Ensure the control surfaces with lock pads and/or lock the stick using the safety belts. Make sure that everything is shutted-down (master switches OFF and key removed) before closing the canopy.



Cover the aircraft if possible, protect the pitot-static tube and proceed to the tie down, accomplished by the use of ropes engaged under the tie down points below the wing, tailcone and if suitable also nose gear strut.

# 8.6. **Servicing**

This chapter provides useful information concerning the approved fuel and oil grades and specifications. In order to comply with all fluids to be used on Tecnam Astore aircraft, the suitable fluids for Brake system oil and coolant are also provided.

# 8.6.1. Fuel grades

Read more on fuel grades on ROTAX website and relevant Service Instructions such as SI-912-016 in its latest revision. Maximum Ethanol content allowed is 10%.

| Fuel Specification 912iS                 |                          |  |  |
|------------------------------------------|--------------------------|--|--|
|                                          | Description              |  |  |
| Anti knock properties                    | Min. RON95 (Min AKI* 91) |  |  |
| MOGAS Standard (EU) EN 228 Super         |                          |  |  |
| EN 228 Super plus                        |                          |  |  |
| Aviation Standard AVGAS 100LL (ASTM D910 |                          |  |  |

<sup>\*</sup>AKI = (RON+MON)/2





# 8.6.2. Oil grades

Read more on oil grades on ROTAX website and relevant Service Instructions such as SI-912-016 in its latest revision.

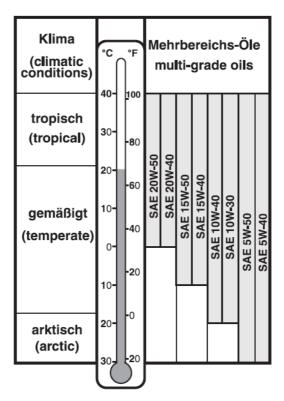
Motor oil tested and released from BRP-Powertrain (for use with unleaded fuel or MOGAS) is:

| Brand | Description            | Specs  | Viscosity  | Code |
|-------|------------------------|--------|------------|------|
| SHELL | AeroShell Sport Plus 4 | API SL | SAE 10W-40 | 2    |

Motor oil tested and released from BRP-Powertrain (for use with unleaded fuel or AVGAS) is:

| Brand | Description            | Specs  | Viscosity  | Code |
|-------|------------------------|--------|------------|------|
| SHELL | AeroShell Sport Plus 4 | API SL | SAE 10W-40 | 2    |

#### **CAUTION**


Some restrictions in terms of maintenance intervals are given if the engine is mainly operated with AVGAS. If the engine operates with AVGAS for more than 30% of its operating time, refer to the SI-912-016 and engine maintenance manual in order to know more on these additional maintenance intervals.

#### **NOTE**

Other oil brands and grades have been tested by ROTAX authorized distributors (not tested directly by ROTAX). In order to have the full list refer to the latest revision of SI-912-016 for both MOGAS and AVGAS suggested oil brands and grades.

Ed.1 Rev.0

The following viscosity table is a reference for the type of oil suitable on your ROTAX. Always refer to the ROTAX operator's and maintenance manual for complete information and always note that the following table is only a guideline: the oil pressure and temperature limitation should be always compliant to those shown in the Section no.2 of this POH and those reported in the ROTAX operator's manual.







#### 8.6.3. **Coolant**

In principle, 2 different types of coolant are permitted:

- conventional coolant based on ethylene glycol with 50% water content:
- waterless coolant based on propylene glycol (not allowed for 912i Series)

Tecnam installation and test flight are performed using a mixture of Selenia Paraflu (80%) and distilled water (20%). Other coolant brands are recommended by ROTAX authorized distributors to be used mixed with 50% of distilled water:

| Marke / brand | Bezeichnung / description                |
|---------------|------------------------------------------|
| BASF®         | Glysantin Protect Plus/G48               |
| CASTROL®      | Antifreeze All-Climate                   |
| CASTROL®      | Antifreeze Anti-Boil                     |
| OMV®          | OMV Coolant Plus                         |
| PETROL®       | Antifreeze Concentrate / Antifreeze G 11 |
| PRESTONE®     | DEX-COOL extended life                   |
| PRESTONE®     | 50/50 preluded DEX-COOL extended life    |
| SHELL®        | DEX-COOL                                 |
| SHELL®        | Antifreeze Concentrate                   |
| TEXACO®       | Havoline Extended Life Antifreeze /      |
| VELVANA®      | FRIDEX G49                               |
| YACCO®        | LR-35                                    |

# **WARNING**

Waterless coolant is not approved for use on 912iS series.

#### NOTE

In order to have the full list refer to the latest revision of SI-912-016

## 8.6.4. **Brake oil**

The allowed oil to be used in the braking system is:

MIL-H-5606

# **WARNING**

DOT5-1. DOT3 and DOT4 must be avoided as they will cause immediate damage on the seals.





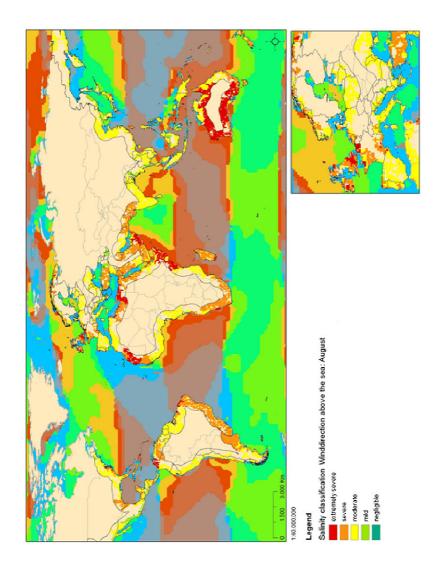
# 8.7. Cleaning and Care

#### 8.7.1. General notes

This chapter shows and describe how to have the correct care of your Tecnam Astore aircraft. Before illustrate how to clean the aircraft main parts, it is important to briefly describe how to take care of airframe against corrosion in some climates. Tecnam strongly recommend the use of

ACF-50

This product is almost worldwide available and has an incredible effect against the corrosion accretion.




The Tecnam Service Bulletin N°19-LSA describes how to use the compound. In order to know more about the anti-corrosion treatment, refer to the relevant AMM sections.

The following world map (source SPIE digital library) can give an idea where special care against corrosion has to be taken into account.



Ed.1 Rev.0





### 872 Windows

For windows cleaning, it is allowed the use of products employed for glass and Plexiglas surfaces cleaning.

## 8.7.3. External surfaces

Aircraft surface is cleaned with soapy water; they are not allowed solvents or alcohol based products. Insects must be removed using hot water, preferably immediately after landing. It is advisable to avoid outside aircraft parking for long periods; it is always convenient to keep the aircraft in the hangar.

# 8.7.4. **Propeller**

To preserve its functionality avoiding wear, the propeller manufacturer uses, for external surface painting, an acrylic paint which is resistant to all solvents. In any case it is advisable to clean the propeller using exclusively soapy water or de-natured alchol.

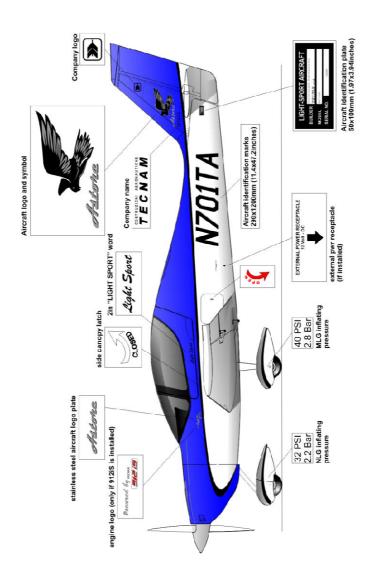
# 8.7.5. **Engine**

Engine cleaning is part of the scheduled maintenance. Refer to the engine manufacturer Maintenance Manual for operating and for planning its cleaning.

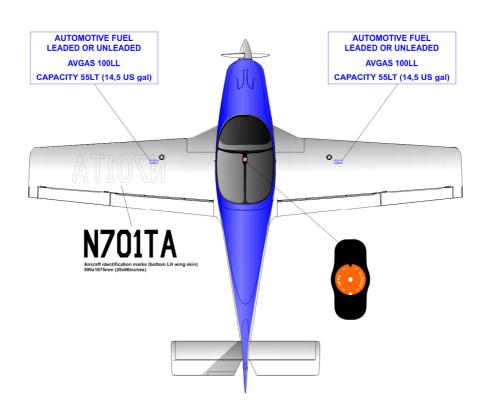
## 8.7.6. Internal surfaces

Interiors must be cleaned with a rate of 3 to 6 months. Any object present in the cabin (like pens, lost property, maps etc) must be removed. The instrumentation as a whole must be cleaned with a humid cloth; plastic surfaces can be cleaned with suitable products. For parts not easily accessible, perform cleaning with a small brush; seats must be cleaned with a humid cloth.

# 10. Section No. 10 - Marking and Placards


This section describes the placards and marking provided with the Tecnam Astore aircraft

# 10.1. External marking


The following pictures show the external marking and placards. Refer to the relevant supplement if different equipment require additional markings (i.e. parachute system).

Also, a table indicates and describes all the marking dimensions and function













Ed.1 Rev.1

| 32 PSI                                 | Nose Gear inflating pressure                  | 17x12mm  |
|----------------------------------------|-----------------------------------------------|----------|
| 2.2 Bar                                |                                               |          |
| 40 PSI                                 | Main Gear inflating pressure                  | 17x12mm  |
| 2.8 Bar                                |                                               |          |
| Light Sport                            | "LIGHT SPORT"                                 | 55x250mm |
| FStone                                 | Aircraft logo                                 | 146x25mm |
| Powered by ROTAX                       | Engine logo (only with 912iS)                 | 96x26mm  |
| EXTERNAL POWER RECEPTACLE 12 Volt - DC | External power receptacle (only if installed) | 107x40mm |
| 1 40                                   | Baggage compartment key placard               | 25x35mm  |

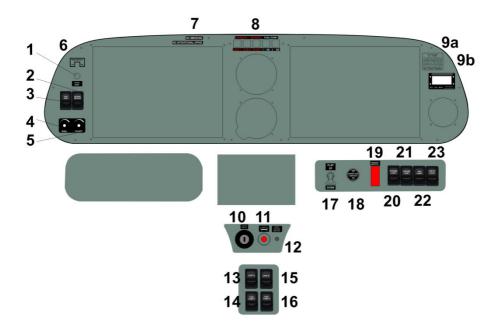


# POH

Ed.1 Rev.1

|                                                                                                 | Aircraft logo (fin sticker)                     | 395x220mm  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|
| dstone                                                                                          |                                                 |            |
|                                                                                                 | Company logo                                    | 120x100mm  |
| TECNAM                                                                                          | Company name                                    | 160x30mm   |
| LIGHT-SPORT AIRCRAFT  BUILDER Costruzioni Aeronautiche TECNAM srl  MODEL Astore SERIAL NO. XXXX | Aircraft identification plate (stainless steel) | 100x50mm   |
| N701TA                                                                                          | Aircraft marks                                  | 1200x290mm |
| A CLOSED                                                                                        | Canopy opening                                  | 90x190mm   |

| AUTOMOTIVE FUEL<br>LEADED OR UNLEADED | Fuel tank capacity | 100x40mm |
|---------------------------------------|--------------------|----------|
| AVGAS 100LL                           |                    |          |
| CAPACITY 55LT (14,5 US gal)           |                    |          |


# 10.2. Internal marking and placards - 912iS

The following images show the internal placard and markings. The internal marking and placards may vary from the different versions and equipment. The following refer to the 912i Series engine installation.

#### **NOTE**

most of the switches are marked on their body. In the placards table each one is shown with the related function





| 1 | PITOT<br>HEAT     | Pitot heat (only if installed) |
|---|-------------------|--------------------------------|
| 2 | AVIONIC<br>MASTER | Avionic Master Switch          |



| 3 | EFIS<br>EMS                     | EFIS EMS Master Switch                        |
|---|---------------------------------|-----------------------------------------------|
| 4 | PANEL                           | Panel dimmer (if installed)                   |
| 5 | COCKPIT                         | Cockpit light dimmer (if installed)           |
| 6 | TRIM SWITCH                     | Trim selector switch                          |
| 7 | NO SMOKING NO INTENTIONAL SPINS | "NO SMOKING"  "NO INTENTIONAL SPIN"  placards |





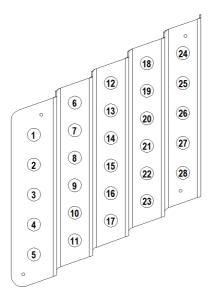
| 8  | WARNING WARNING FUEL PUMP  LANE A LANE B BCK BATT. 1 - ON 2 - ON                                                                                                                                                                                                                                                                     | 912i Series annunciator panel<br>placards. See Sect. No 3 for<br>operations and lamp colors |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 9a | Manouvering speed  V <sub>A</sub> = 97KIAS  This aircraft was manufactured in accordance with Light Sport Aircraft airworthiness standards and does not conform to standard cathegory airworthiness requirements. All aerobatics manouvers including spinning are prohibited. For operational limitations refer to THE FLIGHT MANUAL | Maneuvering speed Passenger warning                                                         |
| 9b | FOR AVIATION EMERGENCY USE ONLY UNAUTHORIZED OPERATION PROHIBITED  ELT ON_ARM  TESTINESET PRESS ON WAIT 1 SECOND PRESS ARM                                                                                                                                                                                                           | ELT remote switch placard                                                                   |
| 10 | MASTER<br>SWITCH                                                                                                                                                                                                                                                                                                                     | Master switch (key)                                                                         |
| 11 | STARTER                                                                                                                                                                                                                                                                                                                              | Starter button                                                                              |
| 12 | START<br>POWER<br>SWITCH                                                                                                                                                                                                                                                                                                             | Start Power Switch                                                                          |



| 13 | LANE A             | LANE A Switch   |
|----|--------------------|-----------------|
| 14 | FUEL<br>PUMP 1     | FUEL PUMP 1 Sw. |
| 15 | LANE B             | LANE B Switch   |
| 16 | FUEL<br>PUMP 2     | FUEL PUMP 2 Sw. |
| 17 | FLAP<br>UP<br>DOWN | Flap Switch     |






| 18 | PUSH<br>OFF<br>DEFROST AND<br>CABIN HEAT<br>ON<br>PULL | Cabin heat knob        |
|----|--------------------------------------------------------|------------------------|
| 19 | BACKUP<br>BATTERY                                      | Back-up battery switch |
| 20 | STROBE<br>LIGHT                                        | Strobe Light Switch    |
| 21 | LANDING<br>LIGHT                                       | Landing Light Switch   |
| 22 | NAV<br>LIGHT                                           | NAV Light Switch       |





# 10.3. Breakers Panel Marking

The following images and table show the circuit-breaker panel marking with the related value and function. The sequence assigned is following shown:





Note that the following table only show the breakers used for the basic 912iS configuration, refer to the relevant POH Supplement to know more about the additional equipment breaker position and value.

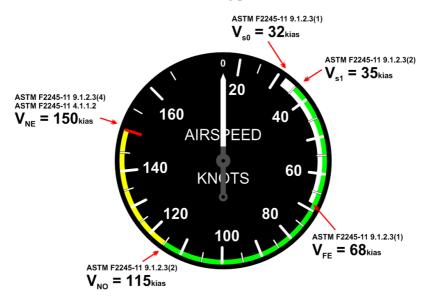
| N° | Amps<br>rating | description    | N° | Amps<br>rating | Description |
|----|----------------|----------------|----|----------------|-------------|
| 1  | 25             | Battery        | 15 | AV.            | Spare       |
| 2  | 25             | Generator      | 16 | 10             | 12V Socket  |
| 3  | 7½             | Instruments    | 17 | AV.            | Spare       |
| 4  | 5              | Instr. Light   | 18 | 5              | MFD         |
| 5  | 5              | Bagg.Comp. Lt. | 19 | 2              | ADAHRS      |
| 6  | 7½             | Flap           | 20 | AV.            | Spare       |
| 7  | 3              | Trim           | 21 | AV.            | Spare       |
| 8  | AV.            | Spare          | 22 | AV.            | Spare       |
| 9  | 7½             | Strobe Light   | 23 | AV.            | Spare       |
| 10 | 3              | Nav Light      | 24 | AV.            | Spare       |
| 11 | 3              | LND Light      | 25 | AV.            | Spare       |
| 12 | 5              | PFD            | 26 | AV.            | Spare       |
| 13 | 2              | ADARHS         | 27 | AV.            | Spare       |
| 14 | 2              | EIS            | 28 | AV.            | Spare       |

Ed.1 Rev.1

## 10.4. Baggages compartment placard

As per Section No. 2, the baggage compartment is allowed for a maximum load of 77lb/35kg. This load is what Tecnam used to demonstrate the crash loads strength of cargo net and related hooks. The placard dimensions are 100x50mm.

MAXIMUM ALLOWED BAGGAGE WEIGHT 77 lb - 35 kg FASTEN USING CARGO NET


## **WARNING**

It is pilot's responsibility to always check that the aircraft is properly balanced before going in-flight.

# 10.5. Airspeed Indicator markings

This paragraph show the ASI markings and dials. Refer to the Section No.2 - Limitations to be fully aware of all the instruments limits.

The Tecnam Astore is always provided by an analogue Airspeed Indicator, with an internal dial and markings according the ASTM F2245. The ASI dial is shown in the following picture:



The ASI markings are in IAS, refer to the Section No.2 - Limitations, for all the corresponding CAS speeds.





# 10.6. Engine cowling placards

The following placards are sticked inside the engine compartment:

| 1 | COOLANT<br>waterless not approved<br>on 912iS   | Placard on the overflow bot-<br>tle clamp   |
|---|-------------------------------------------------|---------------------------------------------|
| 2 | 80% ANTIFREEZE + 20% WATER no waterless coolant | Coolant ratio                               |
| 3 | AUTOMOTIVE OIL<br>APL "SF" OR "SG"              | Oil specs placard (on the oil tank side)    |
| 4 | SPECIFY<br>HYDRAULIC OIL<br>MIL H5606           | Brake system oil (on the brake system tank) |



# 9. Section No. 9 - Supplements

| Aircraft Mar<br>S/N: |                                                              | arks: |           | Date:                         |      |           |
|----------------------|--------------------------------------------------------------|-------|-----------|-------------------------------|------|-----------|
|                      | TECNAM ASTO                                                  | RE SU | PPLEMEN   | NT LIST                       |      |           |
| Supp.                | Title                                                        | Rev.  | Rev. Date |                               | ABLE | Mark if   |
| No.                  |                                                              |       |           | YES                           | NO   | installed |
| S1                   | Garmin G3X avionic package                                   | es 01 | 03/25/14  | •                             |      |           |
| S2                   | Garmin GSA28 base<br>autopilot with GMC30<br>mode controller |       | 02/18/14  | Required<br>S1                |      |           |
| S3                   | Garmin GTX23 Mode<br>remote mounted trar<br>sponder          |       | 02/18/14  | Required<br>S1                |      |           |
| S4                   | Garmin ADS-B unit                                            | 00    | 02/18/14  | Required<br>S1+S3             |      |           |
| S5                   | Garmin GMA240 audi panel                                     | o 00  | 02/18/14  | •                             |      |           |
| S6                   | Garmin GTR200 COM                                            | 00    | 02/18/14  | •                             |      |           |
| S7                   | GAP26 AOA                                                    | 00    | 02/18/14  | Required<br>S1 for AOA indic. |      |           |
| S8                   | ELT Artex ME406                                              | 00    | 02/25/14  | •                             |      |           |

intentionally left in blank

# **Record of revisions**

Any revision to the Supplements is recorded: a Record of Revisions is provided at the front of this Supplement List and the operator is advised to make sure that the record is kept up-to-date.

The revision code is numerical and consists of the number "0"; subsequent revisions are identified by the change of the code from "0" to "1" for the first revision to the basic publication, "2" for the second one, etc.

These pages will be updated to the current regular revision date.

**NOTE**: It is the responsibility of the owner to maintain this handbook in a current status when it is being used for operational purposes.





# List of effective pages

The List of Supplements' Effective Pages (LOSEP), applicable to manuals of every operator, lists all the basic Supplement pages.

Pages affected by the current revision are indicated by an asterisk (\*) following the revision code.

| Supplement | Pages     | Revision |
|------------|-----------|----------|
| S1         | 1 thru 13 | 01       |
|            |           |          |
|            |           |          |
| S2         | 1 thru 11 | 00       |
|            |           |          |
|            |           |          |
| S3         | 1 thru 7  | 00       |
|            |           |          |
| G.4        | 1.1.6     | 0.0      |
| S4         | 1 thru 6  | 00       |
|            |           |          |
| S5         | 1 thru 7  | 00       |
|            |           |          |
| 0.6        | 1.1.0     | 0.0      |
| S6         | 1 thru 8  | 00       |
|            |           |          |
|            |           |          |





| Supplement | Pages    | Revision |
|------------|----------|----------|
| S7         | 1 thru 8 | 00       |
|            |          |          |
| S8         | 1 thru 7 | 00       |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |
|            |          |          |

# 1.1. Supplement S1 - Garmin G3X avionics suite

# SUPPLEMENT S1 GARMIN G3X AVIONICS SUITE

# **WARNING**

This supplement must be inserted into the POH if the equipment described is installed onboard

Revision n. 01

Date: 03/25/2014

#### 1 1 1 S1 - 1 - General

This Supplement shows the main features, characteristics and procedures to operate the Garmin G3X avionics suite. The operator must be fully aware of all the official documentation provided by GARMIN concerning the system.

#### WARNING

Download the Pilot's Guide and read it carefully before start operating the Garmin AFCS on your Tecnam Astore. Latest revision of Garmin Pilot's Guide (P/N 190-01115-00L) must be carried onboard.

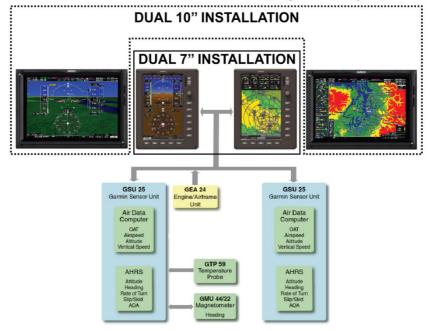
G3X suite is available with 7 inches or 10 inches screens. The 7 inches version can be supplied with three screens and is soft-buttons operated, while the 10 inches is only available in dual screens configuration and is mixed touch screen-soft buttons and knob operated. This suite offer the most wide flight and engine management information provision, but also information like fuel management, flap and trim position and GPS based data are available. In this Supplement, only the most relevant information concerning the G3X suite are shown, while it is pilot's (operator's) responsibility to be fully aware of the system functions, operating limitations and also, but not less important, the pilot must be always aware of his own capability in using an high integrated-high information providing unit. For this reason, a deep training with experienced flight instructor is considered as mandatory before starting the use of a Tecnam Astore equipped with a G3X suite.

#### NOTE

Even if all the flight data are provided inside the G3X suite, and even if, according with ASTM F2245-11 Sect. A2 the data provided can be sufficient to fly the properly equipped Tecnam Astore at Night (where approved), Tecnam install a back-up analogue airspeed indicator and altimeter. The back-up of attitude and air data is also provided via a dual ADAHRS (GSU25) installation.

The system components are described in the Section S1-7, while in order to be fully aware of the system features it is mandatory to read the Garmin manuals available on the web at the link below:




http://www.garmin.com/en-US/explore/intheair/

#### **NOTE**

The system layout as installed on Tecnam Astore, basic G3X configuration is shown below. Refer to the relevant Supplement(s) in order to know more about the additional units such as radio, transponder, autopilot, ADS-B, heated pitot and so on, that can be interfaced with G3X.



# Tecnam Astore G3X suite basic configuration layout



#### **NOTE**

when the G3X suite is installed, the aircraft is provided with an EFIS SWITCH. As soon as the MASTER and the EFIS switches are ON, the displays will load the software.





#### 1.1.2. **S1 - 2 - Limitations**

The following limitation shall apply when the Tecnam Astore is equipped with Garmin G3X avionics suite, in addition to the standard POH Sect.2 and to those coming from the latest Garmin pilot's and installation documentation:

- 1) If installed, the G3X Terrain Proximity feature is NOT intended to be used as a primary reference for terrain avoidance and does not relieve the pilot from the responsibility of being aware of surroundings during flight;
- 2) During flight operations, carefully compare indications from the G3X to all available navigation sources, including the information from other NAVAIDs, visual sightings, charts, etc;
- 3) The displayed minimum safe altitudes (MSAs) are only advisory in nature and should not be relied upon as the sole source of obstacle and terrain avoidance information. Always refer to current aeronautical charts for appropriate minimum clearance altitudes;
- 4) Always use pressure altitude displayed by the G3X PFD when determining or selecting aircraft altitude;
- 5) Do not use outdated database information;
- 6) Do not use basemap (land and water data) information for primary navigation;
- 7) Do not use the approach information provided by the VFR navigation database residing within the G3X as a means of navigating any instrument approach;
- 8) The G3X Fuel Calculator and/or Fuel Range Rings are NOT intended to be relied upon as the primary fuel indicator(s), and does not relieve the pilot from the responsibility of proper flight planning;
- 9) Even if back-up instruments are fully operative, if error or system inoperative messages should appear, Tecnam recom-

mends to solve the issue before flying in order to avoid misreading of data coming from avionics and back-up instruments;

#### 1.1.3. S1 - 3 - Emergency procedures

Refer to the standard POH Sect No.3 - Emergency procedures, to manage the overvoltage/generator failure. Note that, if the G3X suite is installed on your Tecnam Astore, the monitoring of LANE A Volt, LANE B Volt and battery charge voltage are displayed on the G3X MFD.

# 1.1.4. **S1 - 4 - Normal procedures**

When the Tecnam Astore is equipped with Garmin G3X avionic suite, in addition to the standard POH Sect.4, there is the EFIS/EMS switch to be turned ON to power the units.

#### NOTE

Download the Pilot's Guide and read it carefully before start operating the Garmin G3X avionic suite on your Tecnam Astore. Latest revision of Garmin Pilot's Guide (P/N 190-01115-00L) must be carried onboard.

#### 1.1.5. **S1 - 5 - Performances**

Garmin AFCS employment does not affect the aircraft performances.



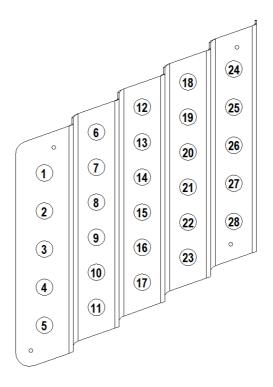
# 1.1.6. **S1 - 6 - Weight and Balance**

When installed, the Garmin a/p is composed by the following units/components (Arm in reference with the propeller flange without spacer:

| Description                                  | Weight | Arm  | Moment |
|----------------------------------------------|--------|------|--------|
|                                              | [kg]   | [mt] |        |
| 34 - NAVIGATION                              |        |      |        |
| 7" single display unit                       | 0.85   | 1.41 | 1.20   |
| 10" single display unit                      | 2.11   | 1.41 | 2.98   |
| GSU 25 ADAHRS                                | 0.35   | 2.85 | 1.00   |
| GSU 25 ADAHRS - second unit                  | 0.35   | 2.97 | 1.00   |
| GEA 24 EIS                                   | 0.75   | 1.27 | 1.00   |
| GTP 59 OAT probe                             | 0.06   | 2.12 | 0.10   |
| GMU 22 magnetometer                          | 0.31   | 5.23 | 1.60   |
| Wiring assembly, switches, breakers and rel. | 6.00   | 2.19 | 13.1   |
| components                                   |        |      |        |



# 1.1.6.1.Equipment List


If the Garmin G3X avionics suite is installed, the related equipment list (and related equipment necessary to fly according LSA requirements, DAY and NIGHT conditions) is following illustrated:

| ITEM | Description                                | Standard         | Weight | Arm  |
|------|--------------------------------------------|------------------|--------|------|
|      |                                            | <b>O</b> ptional | [kg]   | [mt] |
|      |                                            | Mandatory*       |        |      |
|      | 24 - ELECTRICAL POWER                      |                  |        |      |
|      | External alternator - 40A                  | 0                | 3.50   | 0.09 |
|      | Battery - Spark500*                        | 0                | 4.90   | 0.70 |
|      | Battery - Alliant X3                       | S - M            | 1.00   | 0.70 |
|      |                                            |                  |        |      |
|      | 34 - NAVIGATION                            |                  |        |      |
|      | Compass (pedestal mounted)                 | S - M            | 0.30   | 1.37 |
|      | Compass (as displayed inside the G3X)      | S                | 0      | 0    |
|      | Airspeed indicator - analogue back up      | S - M            | 0.40   | 1.37 |
|      | Altitude indicator - analogue back up      | S - M            | 0.40   | 1.37 |
|      | GARMIN G3X EMS display information         | S - M            | 0.80   | 1.41 |
|      | GARMIN G3X flight and attitude display in- | S - VFRN         | 0.80   | 1.41 |
|      | formation                                  |                  |        |      |
|      |                                            |                  |        |      |
|      | 77 - ENGINE INDICATING                     |                  |        |      |
|      | MAP indicator                              | 0                | 0.40   | 1.38 |
|      | Garmin G3X EMS display (replaces Dynon D-  | S - M            | 0.80   | 1.41 |
|      | 10 EMS)                                    |                  |        |      |
|      |                                            |                  |        |      |

<sup>\*</sup>The Spark 500 battery is required when the aircraft is operated with 912iS engine

# 1.1.1. **S1 - 7 - System description**

When installed, the G3X avionic suite components require a completely dedicated electrical system with circuit breakers following illustrated:







| N° | Amps   | description    | N° | Amps   | Description |
|----|--------|----------------|----|--------|-------------|
|    | rating |                |    | rating |             |
| 1  | 25     | Battery        | 15 | 7.5    | Autopilot   |
| 2  | 25     | Generator      | 16 | 10     | 12V Socket  |
| 3  | 7½     | Instruments    | 17 | 3      | ADS-B       |
| 4  | 5      | Instr. Light   | 18 | 5      | MFD         |
| 5  | 5      | Bagg.Comp. Lt. | 19 | 2      | ADAHRS      |
| 6  | 7½     | Flap           | 20 | 10     | COM         |
| 7  | 3      | Trim           | 21 | 4      | NAV         |
| 8  | 20     | Pitot          | 22 | 5      | AUDIO P.    |
| 9  | 7½     | Strobe Light   | 23 | 5      | XPDR        |
| 10 | 3      | Nav Light      | 24 | AV.    | Spare       |
| 11 | 3      | LND Light      | 25 | AV.    | Spare       |
| 12 | 5      | PFD            | 26 | AV.    | Spare       |
| 13 | 2      | ADARHS         | 27 | AV.    | Spare       |
| 14 | 2      | EIS            | 28 | AV.    | Spare       |



Following the basic panel layout is shown when it is installed with ROTAX 912ULS:



| N° | description                | N° | Description       |
|----|----------------------------|----|-------------------|
| 1  | EFIS Master                | 8  | Ignition key      |
| 2  | PFD                        | 9  | Master-Gen switch |
| 3  | MFD                        | 10 | Flap switch       |
| 4  | Light dimmers              | 11 | Cabin heat knob   |
| 5  | Back-up airspeed indicator | 12 | Landing Light     |
| 6  | Available                  | 13 | Strobe Light      |
| 7  | Altitude indicator         | 14 | NAV Light         |
| 15 | Fuel Pump switch           |    |                   |



Following the basic panel layout is shown when it is installed with ROTAX 912i Series engine:



| N° | description                | N° | Description       | N° | Description      |
|----|----------------------------|----|-------------------|----|------------------|
| 1  | EFIS Master                | 9  | Cabin heat knob   | 17 | Start PWR switch |
| 2  | PFD                        | 10 | Back-up batt. Sw. | 18 | LANE A switch    |
| 3  | 912iS annunciator panel    | 11 | Landing Light     | 19 | LANE B switch    |
| 4  | MFD                        | 12 | Strobe Light      | 20 | FUEL P.1 switch  |
| 5  | Back-up airspeed indicator | 13 | NAV Light         | 21 | FUEL P.2 switch  |
| 6  | Altitude indicator         | 14 | Instrument ligt   | 22 | //               |
| 7  | Available                  | 15 | Master key        | 23 | //               |
| 8  | Flap switch                | 16 | Starter button    | 24 | //               |



# 1.1. Supplement S2 - Garmin autopilot

# SUPPLEMENT S2 GARMIN AUTOMATIC FLIGHT CONTROL SYSTEM

# **WARNING**

This supplement must be inserted into the POH if the equipment described is installed onboard

Revision n. 00

Date: 02/18/2014

#### 1.1.1. **S2 - 1 - General**

This Supplement shows the main features, characteristics and procedures to operate the Garmin AFCS. The operator must be fully aware of all the official documentation provided by GARMIN concerning the autopilot system.



#### **NOTE**

Download the Pilot's Guide and read it carefully before start operating the Garmin AFCS on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard.

G3X suite can communicate with Garmin AFCS. On Tecnam Astore the GMC305 mode controlled is installed to provide the most flexible way to control the autopilot modes and functions. The GMC305 is installed on the lower LH panel section together with the a/p master switch.

Tecnam Astore installation provides the installation of pitch and roll servos. No yaw damper is required due to the high directional stability. Servos are connected to the control system via rigid rods. No pulleys or cable are installed so that the maintenance is easier and inspections immediate.



#### 1.1.2. **S2 - 2 - Limitations**

The following limitation shall apply when the Tecnam Astore is equipped with Garmin AFCS, in addition to the standard POH Sect.2:

- 1) The AFCS can be operated in the 70-115kIAS airspeed range, according with the placard on the cockpit panel;
- 2) The autopilot must not be used for final approach procedure. In order to know more about the APR modes for LOC/ILS approaches refer to the latest Garmin Pilot's Guide;
- 3) During autopilot operations the pilot must remain seated on its place with safety belts secured, continuously monitoring the flight instruments;
- 4) The use of autopilot with flap extended more than T/O position is forbidden;
- 5) A/P MASTER SWITCH must be OFF during takeoff and final approach (decision height 200'AGL);
- 6) Autopilot must be operated during normal cruise and descent only above 1.000ft
- 7) Limitation placard:

#### **AUTOPILOT LIMITATIONS**

- speed range: 70-115kIAS
- during approach, disconnect below 200'AGL
- fasten seat belts and monitor the instruments during a/p oper.
- do not extend flaps over T/O position during a/p oper.
- operate a/p during cruise and descent only above 1.000'AGL
- 8) Do not set parameters in terms of vertical speed which go above the climb rates shown in the Section no.5

## 1.1.3. **S2 - 3 - Emergency procedures**

The following emergency procedures shall apply when the Tecnam Astore is equipped with Garmin AFCS, in addition to the standard POH Sect 3:

#### **CAUTION**

In event of autopilot malfunction, or when the system is not performing as expected or commanded, take immediately the aircraft control disconnecting the autopilot which must be set inoperative until the failure has been identified and corrected

### 1.1.3.1. Failure to hold selected function

|                   | GRASP firmly to override the a/p servos |
|-------------------|-----------------------------------------|
| A/P master switch | OFF                                     |
| Aircraft control  | Establish                               |

#### **NOTE**

The elevator trim is completely separated from the autopilot control line, so it can be operated even if a/p master switch is OFF

# 1.1.4. **S2 - 4 - Normal procedures**

The following normal procedures shall apply when the Tecnam Astore is equipped with Garmin AFCS, in addition to the standard POH Sect.4:

#### **NOTE**

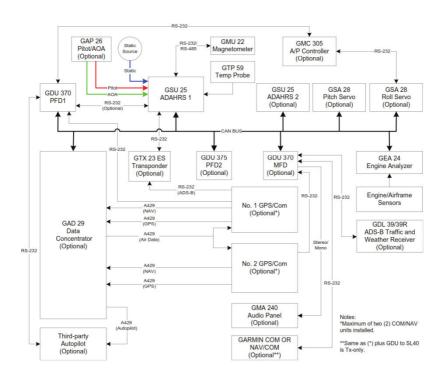
Download the Pilot's Guide and read it carefully before start operating the Garmin AFCS on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard

#### WARNING

The vertical speed mode is used to establish and hold a PILOT selected vertical speed. It is the responsibility of the pilot to ensure that the vertical speed selection is within the operating limits of the aircraft's capabilities. Selection of a vertical speed beyond the capability of the aircraft can create a condition of reduced airspeed, and possibly lead to a stall condition

#### 1.1.5. **S2 - 5 - Performances**

Garmin AFCS employment does not affect the aircraft performances.

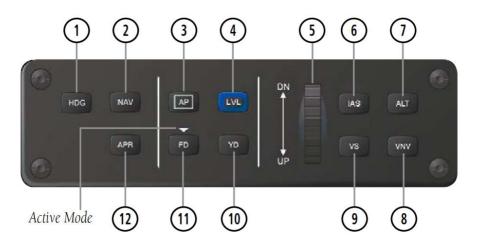

#### 1.1.6. **S2 - 6 - Weight and Balance**

When installed, the Garmin a/p is composed by the following units/components (Arm in reference with the propeller flange without spacer:

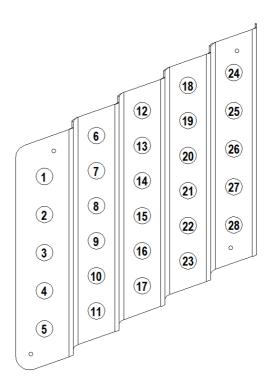
| Description                             | Weight | Arm  | Moment |
|-----------------------------------------|--------|------|--------|
|                                         | [kg]   | [mt] |        |
| 22 - AUTO FLIGHT                        |        |      |        |
| Garmin Autopilot GMC305 Mode Controller | 0.30   | 1.46 | 0.44   |
| Garmin GSA28 elevator servo             | 0.70   | 3.47 | 2.43   |
| Garmin GSA28 roll servo                 | 0.70   | 2.40 | 1.68   |
| Elevator servo control rod              | 0.15   | 3.62 | 0.54   |
| Roll servo control rod                  | 0.10   | 2.44 | 0.24   |
| Wiring                                  | 2.00   | 2.16 | 4.40   |
|                                         |        |      |        |
| TOTALS                                  | 3.95   |      | 9.73   |

## 1.1.1. **S2 - 7 - System description**

The Garmin autopilot logic schematic is following illustrated. As shown, the main autopilot components are the G3X displays (where the information is shown), the GMC305 mode controller, the elevator and roll servos. The Tecnam Astore also includes the interface components such as a/p master switch, control rods and related components.




The Tecnam Astore is equipped with external AP DISC button (on the control stick), and with an AP MASTER switch. It is not provided with T/O - GO AROUND mode switch. This must be taken into account when performing the procedures described in the Garmin Pilot's guide. The main control button functions of GMC305 are:


- 1) Heading Select Mode;
- 2) Navigation Mode;
- 3) AP engage/disengage;
- 4) LEVEL mode;



- 5) Nose UP/DN wheel to adjust the mode reference in pitch hold, vertical speed, indicated airspeed, and altitude hold;
- 6) IAS Mode select/deselect:
- 7) ALT Mode select/deselect;
- 8) VNV Mode select/deselect;
- 9) VS Mode select/deselect;
- 10) YAW DAMPER NOT ACTIVE;
- 11) Flight Director Mode select/deselect;
- 12) APR Mode select/deselect;



In addition to those circuit breakers used for G3X avionics suite, the autopilot installation requires an additional breaker located in the position 15 as shown below:





| N° | Amps<br>rating | description    | N°     | Amps<br>rating | Description |  |
|----|----------------|----------------|--------|----------------|-------------|--|
| 1  | 25             | Battery        | 15     | 5              | Autopilot   |  |
| 2  | 25             | Generator      | 16     | 10             | 12V Socket  |  |
| 3  | 7½             | Instruments    | 17 AV. |                | Spare       |  |
| 4  | 5              | Instr. Light   | 18     | 5              | MFD         |  |
| 5  | 5              | Bagg.Comp. Lt. | 19     | 2              | ADAHRS      |  |
| 6  | 7½             | Flap           | 20     | AV.            | Spare       |  |
| 7  | 3              | Trim           | 21     | AV.            | Spare       |  |
| 8  | AV.            | Spare          | 22     | AV.            | Spare       |  |
| 9  | 7½             | Strobe Light   | 23     | AV.            | Spare       |  |
| 10 | 3              | Nav Light      | 24     | AV.            | Spare       |  |
| 11 | 10             | LND Light      | 25     | AV.            | Spare       |  |
| 12 | 5              | PFD            | 26     | AV.            | Spare       |  |
| 13 | 2              | ADARHS         | 27     | AV.            | Spare       |  |
| 14 | 2              | EIS            | 28     | AV.            | Spare       |  |



# 1.1. Supplement S3 - Garmin GTX23 Mode S xtr

# **SUPPLEMENT S3**

# GARMIN GTX 23 MODE S REMOTELY MOUNTED TRANSPONDER

# **WARNING**

This supplement must be inserted into the POH if the equipment described is installed onboard

Revision n. 00

Date: 02/18/2014

#### 1 1 1 S3 - 1 - General

This Supplement shows the main features, characteristics and procedures to operate the Garmin GTX transponder. The operator must be fully aware of all the official documentation provided by GARMIN concerning the system.

#### NOTE

Download the Pilot's Guide and read it carefully before start operating the Garmin integrated transponder on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard.

G3X suite can communicate with Garmin GTX 23 remote transponder unit. The proper button allows to enter the standard xtr functions such as code insertion and mode.

#### 1.1.2. **S3 - 2 - Limitations**


Garmin GTX 23 employment does not affect the aircraft limitations.

#### 1.1.3. S3 - 3 - Emergency procedures

Garmin GTX 23 employment does not affect the aircraft emergency procedures. Refer to the current national requirement in terms of emergency codes and inoperative transponder conditions.

#### 1.1.4. S3 - 4 - Normal procedures

When operating with G3X suite, the xtr employment is very easy and intuitive. It is only required to go through a "button flow" to set the xtr menu, the several functions as ident, crs, code, mode and "back", subfunctions regarding the operating mode and "code" sub-functions. Following a most clear flow schematic:

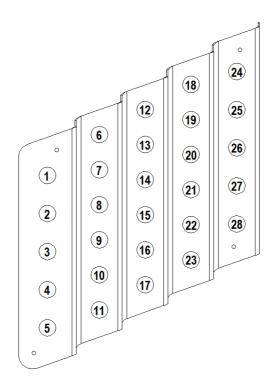


#### 1.1.5. **S3 - 5 - Performances**

Garmin GTX 23 employment does not affect the aircraft performances.

# 1.1.6. **S3 - 6 - Weight and Balance**

When installed, the Garmin GTX 23 remotely mounted transponder is composed by the following units/components (Arm in reference with the propeller flange without spacer:


| Description               | Weight | Arm  | Moment |
|---------------------------|--------|------|--------|
|                           | [kg]   | [mt] |        |
| 23 - COMMUNICATIONS       |        |      |        |
| Garmin GTX 23 remote unit | 2.20   | 3.45 | 7.60   |
| Wiring                    | 2.00   | 2.16 | 4.30   |
| Tranponder antenna        | 0.10   | 1.83 | 0.20   |
|                           |        |      |        |
| TOTALS                    | 4.30   |      | 12.10  |

# 1.1.1. **S3 - 7 - System description**

The transponder system, when installed, is composed by the unit rack, the antenna and the G3X suite (control display). The remotely mounted unit (shown in the picture below), is connected to the rear cabin section, in correspondence with the parachute container structure. The access to the rack is possible after dismounting the rear baggage compartment vertical wall.



In addition to those circuit breakers used for G3X avionics suite, the GTX 23 Mode S transponder installation requires an additional breaker located in the position 23 as shown below:





| N° | Amps<br>rating | description    | N° | Amps<br>rating | Description |
|----|----------------|----------------|----|----------------|-------------|
| 1  | 25             | Battery        | 15 | AV.            | Spare       |
| 2  | 25             | Generator      | 16 | 10             | 12V Socket  |
| 3  | 7½             | Instruments    | 17 | AV.            | Spare       |
| 4  | 5              | Instr. Light   | 18 | 5              | MFD         |
| 5  | 5              | Bagg.Comp. Lt. | 19 | 2              | ADAHRS      |
| 6  | 7½             | Flap           | 20 | AV.            | Spare       |
| 7  | 3              | Trim           | 21 | AV.            | Spare       |
| 8  | AV.            | Spare          | 22 | AV.            | Spare       |
| 9  | 7½             | Strobe Light   | 23 | 5              | XPDR        |
| 10 | 3              | Nav Light      | 24 | AV.            | Spare       |
| 11 | 10             | LND Light      | 25 | AV.            | Spare       |
| 12 | 5              | PFD            | 26 | AV.            | Spare       |
| 13 | 2              | ADARHS         | 27 | AV.            | Spare       |
| 14 | 2              | EIS            | 28 | AV.            | Spare       |

# 1.1. Supplement S4 - Garmin ADS-B unit

# SUPPLEMENT S4 GARMIN ADS-B UNIT

# **WARNING**

This supplement must be inserted into the POH if the equipment described is installed onboard

Revision n. 00

Date: 02/18/2014

# 1 1 1 S4 - 1 - General

This Supplement shows the main features, characteristics and procedures to operate the Garmin ADS-B (Automatic Dependent Surveillance-Broadcast) unit on Tecnam Astore aircraft.

#### **NOTE**

Download the Pilot's Guide and read it carefully before start operating the Garmin ADS-B unit on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard.

#### 1.1.2. **S4 - 2 - Limitations**

Garmin ADS-B probe employment does not affect the aircraft limitations.

#### NOTE

The ADS-B unit and related capabilities are not available for all countries worldwide, but only where the ground stations network operates.

Check the service availability before operating the system.

#### **WARNING**

Do not use data link weather information for maneuvering in, near, or around areas of hazardous weather. Information contained within data link weather products may not accurately depict current weather conditions.





#### WARNING

Do not rely solely upon the display of traffic information for collision avoidance maneuvering. The traffic display does not provide collision avoidance resolution advisories and does not under any circumstances or conditions relieve the pilot's responsibility to see and avoid other aircraft.

# 1.1.3. S4 - 3 - Emergency procedures

Garmin ADS-B probe employment does not affect the aircraft emergency procedures.

# **1.1.4. S4 - 4 - Normal procedures**

When installed (together with a Mode S transponder), configured and activated, the ADS-B unit is able to receive signals of other traffic and weather stations (where the service is available). Also, the system provides the uplink of the aircraft position and altitude to the other airplanes.

#### NOTE

Download the Pilot's Guide and read it carefully before start operating the Garmin ADS-B on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard.

#### 1.1.5. **S4 - 5 - Performances**

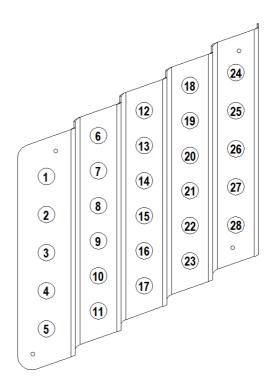
Garmin ADS-B probe employment does not affect the aircraft performances.





# 1.1.6. **S4 - 6 - Weight and Balance**

Garmin ADS-B system consists in a GDL-39R, remotely mounted unit, which interfaces with G3X screen(s). The unit weight and position is shown below:


| Description     | Weight | Arm  | Moment |
|-----------------|--------|------|--------|
|                 | [kg]   | [mt] |        |
| 34 - NAVIGATION |        |      |        |
| GDL 39R unit    | 0.25   | 1.27 | 0.32   |
| ADS-B antenna   | 0.10   | 3.00 | 0.30   |
| ADS-B wiring    | 0.60   | 1.40 | 0.84   |
| TOTALS          | 0.95   |      | 1.46   |

# 1.1.7. **S4 - 7 - System description**



The remote-mountable version of the product, the GDL 39R, provides subscription-free U.S. weather and traffic information, complete with TargetTrend<sup>TM</sup> relative motion and SURF technologies, to your experimental or light sport aircraft's G3X flight display. It can also simultaneously connect to two other devices – like a Garmin aviation portable or mobile device running Garmin Pilot – using a wireless Bluetooth® connection.

In addition to those circuit breakers used for G3X avionics suite and GTX 23 Mode S Transponder, the ADS-B installation requires an additional breaker located in the position 17 as shown below:





| N° | Amps<br>rating | description    | N° | Amps<br>rating | Description |
|----|----------------|----------------|----|----------------|-------------|
| 1  | 25             | Battery        | 15 | AV.            | Spare       |
| 2  | 25             | Generator      | 16 | 10             | 12V Socket  |
| 3  | 7½             | Instruments    | 17 | 3              | ADS-B       |
| 4  | 5              | Instr. Light   | 18 | 5              | MFD         |
| 5  | 5              | Bagg.Comp. Lt. | 19 | 2              | ADAHRS      |
| 6  | 7½             | Flap           | 20 | AV.            | Spare       |
| 7  | 3              | Trim           | 21 | AV.            | Spare       |
| 8  | AV.            | Spare          | 22 | AV.            | Spare       |
| 9  | 7½             | Strobe Light   | 23 | 5              | XPDR        |
| 10 | 3              | Nav Light      | 24 | AV.            | Spare       |
| 11 | 10             | LND Light      | 25 | AV.            | Spare       |
| 12 | 5              | PFD            | 26 | AV.            | Spare       |
| 13 | 2              | ADARHS         | 27 | AV.            | Spare       |
| 14 | 2              | EIS            | 28 | AV.            | Spare       |

# 1.1. Supplement S5 - Garmin GMA240 audio panel

# SUPPLEMENT S5 GARMIN GMA 240 AUDIO PANEL

# **WARNING**

This supplement must be inserted into the POH if the equipment described is installed onboard

Revision n. 00

Date: 02/18/2014

Ed.1 Rev.0

#### 1.1.1. **S5 - 1 - General**

This Supplement shows the main features, characteristics and procedures to operate the Garmin GMA240 Audio Panel. The operator must be fully aware of all the official documentation provided by GARMIN concerning the autopilot system.



#### NOTE

Download the Pilot's Guide and read it carefully before start operating the Garmin GMA240 on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard

The Garmin GMA 240 is a headphones only audio control panel. Pushbutton keys control audio selection of COM, NAV, telephone (TEL - not active on Tecnam Astore), and intercom. Two AUX inputs are available for additional avionics or audio devices. LED annunciators indicate when a key function is selected. Annunciator brightness is adjusted automatically by photocell dimming. LED-illuminated key brightness is adjusted by the radio dimming bus control. In case power is interrupted or the unit is turned off, a fail-safe circuit connects the Pilot's headset, microphone, and PTT directly to COM 1 and the fail-safe alert audio, such as an autopilot disconnect tone. In addition to

radio squelch circuitry, MASQTM (Master Avionics Squelch) processing further reduces ambient noise from the avionics inputs.

When installed, the GMA240 is activated/shut-down by the AVIONIC MASTER SWITCH.

#### 1.1.2. **S5 - 2 - Limitations**

Garmin GMA 240 employment does not affect the aircraft limitations.

# 1.1.3. S5 - 3 - Emergency procedures

Garmin GMA 240 employment does not affect the aircraft emergency procedures.

# 1.1.4. S5 - 4 - Normal procedures

The following normal procedures shall apply when the Tecnam Astore is equipped with Garmin GMA 240, in addition to the standard POH Sect.4:

#### **NOTE**

Download the Pilot's Guide and read it carefully before start operating the Garmin AFCS on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard.

The basic functions and soft buttons are shown in the picture below. As soon as selected, each function is illuminated with a self-dimming LED.





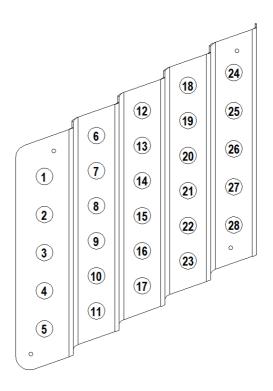
11 ( COPILOT Music 1 or 2 Transceiver Telephone Pilot ICS Intercom Music Audio Key Selection Keys Mute Key and Select Key Isolation or Telephone Key Radio Mute Input Jack Key

# 1.1.5. **S5 - 5 - Performances**

Garmin GMA 240 employment does not affect the aircraft performances.

## 1.1.6. **S5 - 6 - Weight and Balance**

When installed, the Garmin GMA 240 is composed by the following units/components (Arm in reference with the propeller flange without spacer:


| Description                                | Weight | Arm  | Moment |
|--------------------------------------------|--------|------|--------|
| _                                          | [kg]   | [mt] |        |
| 23 - COMMUNICATIONS                        |        |      |        |
| Garmin GMA 240 audio panel & mounting rack | 0.68   | 1.32 | 0.90   |
| Wiring                                     | 1.30   | 1.30 | 1.70   |
|                                            |        |      |        |
| TOTALS                                     | 1.98   |      | 2.60   |

# 1.1.1. **S5 - 7 - System description**

The Garmin GMA 240 Audio Panel is not a TSO-certified product and has received no FAA approval or endorsement.

The GMA 240 meets the needs of aircraft owners and operators who require reliability and versatility in the essential audio switching function. LEDilluminated push-button simplicity and intuitive panel layout allow audio selection of both NAV and COM audio. Large, single-button activation of the COM microphone and audio for two COM transceivers simplifies cockpit workload. Photocell dimming circuitry automatically adjusts the brightness of the annunciators to a level appropriate for ambient cockpit light. The brightness of the backlighting is controlled by the aircraft lighting bus. A fail-safe circuit connects the pilot's headset and microphone directly to COM1 and a fail-safe warning audio input in the event that power is interrupted or the unit is turned off. Additionally, the GMA 240 includes a fourposition intercom (ICS) with electronic cabin noise deemphasis, two stereo music inputs, and independent pilot and copilot/passenger volume controls. To further simplify the cockpit workload, the intercom provides for pilot isolation. One hundred percent solid state circuitry and extensive use of surface mount technology are employed.

In addition to those circuit breakers used for the standard Tecnam Astore package, the GMA 240 audio panel installation requires an additional breaker located in the position 22 as shown below:





| N° | Amps<br>rating | description    | N° | Amps<br>rating | Description |
|----|----------------|----------------|----|----------------|-------------|
| 1  | 25             | Battery        | 15 | AV.            | Spare       |
| 2  | 25             | Generator      | 16 | 10             | 12V Socket  |
| 3  | 7½             | Instruments    | 17 | AV.            | Spare       |
| 4  | 5              | Instr. Light   | 18 | AV.            | Spare       |
| 5  | 5              | Bagg.Comp. Lt. | 19 | AV.            | Spare       |
| 6  | 7½             | Flap           | 20 | AV.            | Spare       |
| 7  | 3              | Trim           | 21 | AV.            | Spare       |
| 8  | AV.            | Spare          | 22 | 5              | Audio Panel |
| 9  | 7½             | Strobe Light   | 23 | AV.            | Spare       |
| 10 | 3              | Nav Light      | 24 | AV.            | Spare       |
| 11 | 10             | LND Light      | 25 | AV.            | Spare       |
| 12 | AV.            | Spare          | 26 | AV.            | Spare       |
| 13 | AV.            | Spare          | 27 | AV.            | Spare       |
| 14 | AV.            | Spare          | 28 | AV.            | Spare       |

# 1.1. Supplement S6 - Garmin GTR200 COM

# SUPPLEMENT S6 GARMIN GTR200 COM

# **WARNING**

This supplement must be inserted into the POH if the equipment described is installed onboard

Revision n. 00

Date: 02/18/2014

#### 1.1.1. **S6 - 1 - General**

This Supplement shows the main features, characteristics and procedures to operate the Garmin GTR 200 VHF communications transceiver. The GTR 200 operates in the aviation voice band, from 118.000 to 136.975 MHz, in 25 kHz steps.

#### NOTE

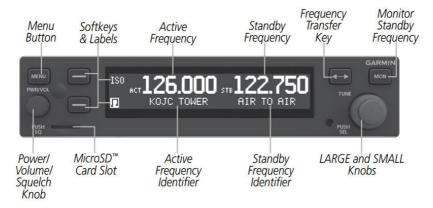
Download the Pilot's Guide and read it carefully before start operating the Garmin GTR 200 on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard.

#### 1.1.2. **S6 - 2 - Limitations**

Garmin GTR 200 VHF COM employment does not affect the aircraft limitations.

# 1.1.3. S6 - 3 - Emergency procedures

Garmin GTR 200 VHF COM employment does not affect the aircraft emergency procedures.


#### **NOTE**

Press and hold for about 3 seconds the Freq. Transfer key (red rounded in the picture below) to set the emergency 121.500MHz frequency.



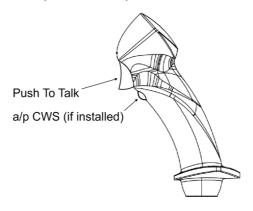
# 1.1.4. S6 - 4 - Normal procedures

The basic functions, display and soft buttons functions are shown in the picture below:



Ed 1 Rev 0

The LH displayed frequency is the active one. Below it, the ICAO identifier code is displayed too if applicable;


The RH displayed frequency is the standby one. Below it, the ICAO identifier code is displayed too if applicable;

The LH rotating knob allows to Power ON the equipment, increase and decrease the volume and, when radio is active, allows to toggle automatic squelch control ON/OFF simply pushing the knob.

The Frequency Transfer Key allows to switch between the active and standby frequency. Press and hold for approximately 3" and the emergency frequency will be the active one.

The Monitor Standby Frequency allows to listen also the standby frequency communications even if the transmission is only possible on the active one.

When the Garmin GTR 200 COM is installed, the Avionic Master switch power it. Also, the stick mounted pushbutton allows both pilot and co-pilot the PTT (Push To Talk) function.



Ed.1 Rev.0

#### NOTE

Download the Pilot's Guide and read it carefully before start operating the Garmin GTR 200 on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard.

# 1.1.5. **S6 - 5 - Performances**

Garmin GTR 200 VHF COM employment does not affect the aircraft performances.

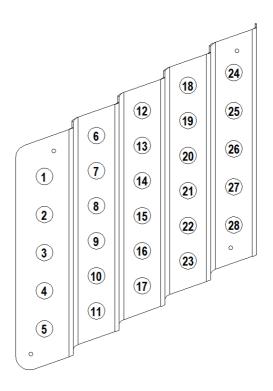
# 1.1.6. **S6 - 6 - Weight and Balance**

When installed, the Garmin GTR 200 COM VHF radio is composed by the following units/components (Arm in reference with the propeller flange without spacer:

| Description                  | Weight | Arm  | Moment |
|------------------------------|--------|------|--------|
| _                            | [kg]   | [mt] |        |
| 23 - COMMUNICATIONS          |        |      |        |
| Garmin GTR 200 unit and rack | 0.97   | 1.32 | 1.28   |
| Wiring                       | 2.00   | 2.16 | 4.30   |
| VHF antenna                  | 0.10   | 2.54 | 0.25   |
|                              |        |      |        |
| TOTALS                       | 3.07   |      | 5.83   |

# 1.1.7. **S6 - 7 - System description**

The Garmin GTR 200 VHF COM is a communications transceiver. The GTR 200 operates in the aviation voice band, from 118.000 to 136.975 MHz, in 25 kHz steps. The Transmission power is 10Watt.


#### NOTE

An aircraft radio station license is not required when operating in U.S. airspace, but may be required when operating internationally.

#### NOTE

Download the Pilot's Guide and read it carefully before start operating (or cleaning) the Garmin GTR 200 on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard.

In addition to those circuit breakers used for the standard Tecnam Astore package, the GTR 200 audio panel installation requires an additional breaker located in the position 20 as shown below:





| N° | Amps<br>rating | description    | N° | Amps<br>rating | Description |
|----|----------------|----------------|----|----------------|-------------|
| 1  | 25             | Battery        | 15 | AV.            | Spare       |
| 2  | 25             | Generator      | 16 | 10             | 12V Socket  |
| 3  | 7½             | Instruments    | 17 | AV.            | Spare       |
| 4  | 5              | Instr. Light   | 18 | AV.            | Spare       |
| 5  | 5              | Bagg.Comp. Lt. | 19 | AV.            | Spare       |
| 6  | 7½             | Flap           | 20 | 10             | COM 1       |
| 7  | 3              | Trim           | 21 | AV.            | Spare       |
| 8  | AV.            | Spare          | 22 | AV.            | Spare       |
| 9  | 7½             | Strobe Light   | 23 | AV.            | Spare       |
| 10 | 3              | Nav Light      | 24 | AV.            | Spare       |
| 11 | 10             | LND Light      | 25 | AV.            | Spare       |
| 12 | AV.            | Spare          | 26 | AV.            | Spare       |
| 13 | AV.            | Spare          | 27 | AV.            | Spare       |
| 14 | AV.            | Spare          | 28 | AV.            | Spare       |



# 1.1. Supplement S7 - Garmin AOA Probe

# SUPPLEMENT S7 GARMIN GAP 26 AOA & PITOT PROBE

# **WARNING**

This supplement must be inserted into the POH if the equipment described is installed onboard

Revision n. 00

Date: 02/18/2014

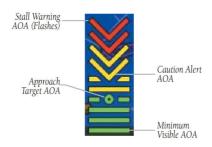
Ed 1 Rev 0

#### 1.1.1. **S7 - 1 - General**

This Supplement shows the main features, characteristics and procedures to operate the Garmin GAP 26 heated pitot/AOA indicator probe. When operated, GAP 26 draws the following current from the aircraft electrical system:

| Temperature | -40°C | 0°C    | 50°C  | 100°C  | 175°C  |
|-------------|-------|--------|-------|--------|--------|
| Amps        | 12 A  | 9.25 A | 7.3 A | 5.85 A | 4.36 A |

The AOA function can be achieved only if the GSU25 unit is installed, that's why Tecnam Astore only install the SAP 26 probe when Garmin G3X ayionic suite is onboard.


#### **NOTE**

Download the Pilot's Guide and read it carefully before start operating the Garmin AOA indicator on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard

#### **NOTE**

Tecnam Flight Test dept. carry out the calibration of AOA. By the way, the correct calibration procedure is also reported in the Garmin Pilot's Guide.





## 1.1.2. **S7 - 2 - Limitations**

The following limitation shall apply when the Tecnam Astore is equipped with Garmin GAP 26 probe, in addition to the standard POH Sect.2:

1) Avoid to heat the pitot probe when the engine rpm is below 4.000;

## **WARNING**

Even if the GAP 26 heated pitot is installed Flight into expected and/or known icing conditions is **prohibited** 





# 1.1.3. S7 - 3 - Emergency procedures

The following emergency procedures shall apply when the Tecnam Astore is equipped with Garmin GAP 26 probe, in addition to the standard POH Sect.3:

## 1.1.3.1.Inadvertent ICING encounter

#### **WARNING**

Immediately get away from icing conditions considering a suitable path to return to the last non-icing area.

| Carb Heat (if present)  | ON                              |
|-------------------------|---------------------------------|
| Pitot Heat Switch       | ON                              |
| Pitot Heat (if present) | ON                              |
| Throttle                | INCREASE                        |
| Cabin heat              | ON                              |
| Landing                 | PERFORM with FLAPS 0°           |
| Approach and touch down | INCREASED AIRSPEED<br>NECESSARY |

#### **CAUTION**

In case of ice formation on wing leading edge, stall speed may increase.



# 1.1.4. **S7 - 4 - Normal procedures**

The following normal procedures shall apply when the Tecnam Astore is equipped with Garmin GAP 26 probe, in addition to the standard POH Sect.4:

#### **NOTE**

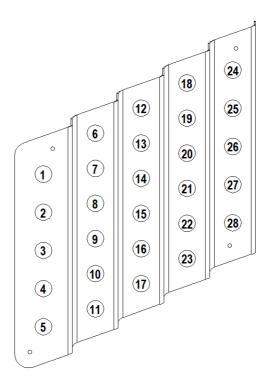
Download the Pilot's Guide and read it carefully before start operating the Garmin AFCS on your Tecnam Astore. Latest revision of Garmin Pilot's Guide must be carried onboard

1) Before take-off, with engine rpm=4.000, perform a functionality check of PITOT HEAT and check if there is a current draw from Amperometer;

#### 1.1.5. **S7 - 5 - Performances**

Garmin AOA probe employment does not affect the aircraft performances

# 1.1.6. **S7 - 6 - Weight and Balance**


When installed, the Garmin AOA probe is composed by the following units/components (Arm in reference with the propeller flange without spacer:

| Description               | Weight [kg] | Arm<br>[mt] | Moment |
|---------------------------|-------------|-------------|--------|
| 34 - NAVIGATION           |             |             |        |
| Garmin GAP 26 pitot probe | 0.20        | 1.83        | 0.37   |

## 1.1.7. **S7 - 7 - System description**

The GAP 26 Pitot/AOA (Angle of Attack) probe is an air data probe intended for use in non FAA certified aircraft, including light sport and home-built aircraft. This air data probe is intended to be used as part of the G3X system. The function of the GAP 26 is to provide pitot and AOA pressures to the GSU 25 for the purpose of displaying airspeed and AOA to the pilot as part of the G3X system. The GAP 26 does not provide a static pressure source to the GSU 25, this continues to be provided by the aircraft standard static system. The version of the GAP 26 installed on Tecnam Astore is the -10 (heated, for ice protection).

In addition to those circuit breakers used for the standard Tecnam Astore package, the GAP 26 Heated pitot installation requires an additional breaker located in the position 8 as shown below. Note that, if the GAP 26 is used to show also the AOA, the G3X avionic suite is mandatory:





| N° | Amps<br>rating | description    | N° Amps<br>rating |     | Description |
|----|----------------|----------------|-------------------|-----|-------------|
| 1  | 25             | Battery        | 15                | AV. | Spare       |
| 2  | 25             | Generator      | 16                | 10  | 12V Socket  |
| 3  | 7½             | Instruments    | 17                | AV. | Spare       |
| 4  | 5              | Instr. Light   | 18                | AV. | Spare       |
| 5  | 5              | Bagg.Comp. Lt. | 19                | AV. | Spare       |
| 6  | 7½             | Flap           | 20                | AV. | Spare       |
| 7  | 3              | Trim           | 21                | AV. | Spare       |
| 8  | 20             | Pitot Heat     | 22                | AV. | Spare       |
| 9  | 7½             | Strobe Light   | 23                | AV. | Spare       |
| 10 | 3              | Nav Light      | 24                | AV. | Spare       |
| 11 | 10             | LND Light      | 25                | AV. | Spare       |
| 12 | AV.            | Spare          | 26                | AV. | Spare       |
| 13 | AV.            | Spare          | 27                | AV. | Spare       |
| 14 | AV.            | Spare          | 28                | AV. | Spare       |



# 1.1. Supplement S8 - ELT ME407

# **SUPPLEMENT S8**

# ARTEX ME406 ELT

# Automatic Fixed Emergency Locator Transmitter

# **WARNING**

This supplement must be inserted into the POH if the equipment described is installed onboard

Revision n. 00

Date: 02/25/2014

#### 1.1.1. **S8 - 1 - General**

This Supplement shows the main features, characteristics and procedures to operate the Artex ME406 ELT.

#### **NOTE**

Download the Operations Guide and read it carefully before start operating ME406 ELT on your Tecnam Astore.

The ME406 is a type AF (Automatic Fixed) beacon, which transmits on 121.5 and 406 MHz. The ME406 ELT is enclosed in an impact resistant plastic casing and mounts on a tray made of similar material. The product identification label on each ELT specifies the transmitting frequencies of the individual ELT. Allocation of frequencies, based on beacon population per specified frequency band, is controlled by COSPAS-SARSAT.

The ELT automatically activates during a crash and transmits the standard sweep tone on 121.5 MHz. Approximately every 50 seconds, for up to 520 milliseconds (long message protocol), the 406 MHz transmitter turns on. During that time, an encoded digital message is sent to the COSPAS-SARSAT Search and Rescue (SAR) satellite system

The information contained in the message includes:

- Serial number assigned to the ELT by the beacon manufacturer or the national beacon registration authority;
- Aircraft identification or registration number;
- Country of registration and country code;

The 406 MHz transmitter will operate for 24 hours and then shuts down automatically. The 121.5 MHz transmitter will continue to operate until the batteries are exhausted, which is at least 50 hours.

The 406 MHz transmitter produces a much more accurate position, typically 3 kilometers as compared with 15 to 20 kilometers for 121.5 MHz transmitters.

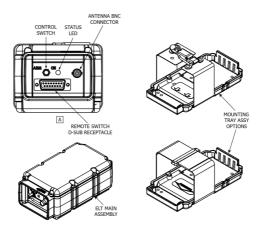
The ELT transmits a digital message that allows search and rescue authorities to contact the owner/operator of the aircraft through information contained in a database. Information contained in the database include:

- Type of aircraft and aircraft registration number Tecnam pre-loaded in the factory;
- Owner address and telephone number;
- Alternate emergency contact.

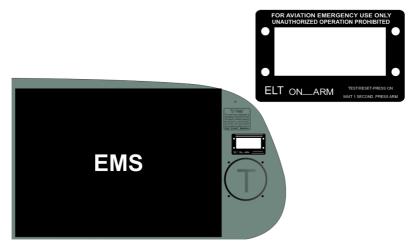
After the ELT is activated and the 406 MHz signal is detected by the SAR satellite system and a position is calculated, the 121.5 MHz transmissions are used to home in on the crash site.



Ed.1 Rev.0


#### NOTE

Effective February 1, 2009, COSPAS-SARSAT has terminated satellite processing of distress signals from 121.5 MHz beacons.


Aircraft communications transceivers are not capable of receiving 406 MHz transmissions; therefore, the only methods of monitoring the ELT are:

- The blinking cockpit remote switch LED;
- 121.5 MHz transmissions, which can be monitored using the aircraft communications transceiver or an AM radio tuned to 121.5 MHz

The ME406 Series ELT main assembly is housed in a high impact, fire resistant, polycarbonate plastic case and mounted in a tray made of similar material.



The cockpit-mounted remote switch assembly is comprised of an ELT status LED and control switch, and allows an operator to manually turn the ELT on (i.e., activate) for testing and reset (i.e., deactivate) the ELT.



#### NOTE

The ELT CANNOT be disarmed or disabled from the cockpit. Cockpit operation is limited to deactivating or manually activating the ELT.

When the ELT is activated, the presence of the emergency sweep tone and the flashing cockpit remote switch panel LED indicates an active, normal functioning ELT. The cockpit panel LED must immediately begin to flash continuously upon ELT activation.

#### 1.1.2. **S8 - 2 - Limitations**

ELT ME406 installation does not affect the aircraft limitations.

# 1.1.3. S8 - 3 - Emergency procedures

The following emergency procedures shall apply when the Tecnam Astore is equipped with ME406 ELT, in addition to the standard POH Sect.3:

#### NOTE

As long as the cockpit remote switch and the ELT local switch are in the ARM (off) positions respectively, the ELT will automatically activate on impact

#### 1.1.3.1.Manual activation

#### **CAUTION**

The ELT may be manually activated by placing either the remote switch or the ELT local switch in the "ON" position

## 1.1.4. **S8 - 4 - Normal procedures**

The following normal procedures shall apply when the Tecnam Astore is equipped with ME406 ELT, in addition to the standard POH Sect.4:

#### **NOTE**

Download the Operations Guide and read it carefully before start operating ME406 ELT on your Tecnam Astore.

#### NORMAL SWITCH POSITION

The cockpit remote switch is in the "**ARM**" position The local switch on the ELT is in the "**ARM**" position

#### 1.1.5. **S8 - 5 - Performances**

ELT ME406 installation does not affect the aircraft performances.

# 1.1.6. **S8 - 6 - Weight and Balance**

When installed, the ELT ME406 is composed by the following units/components (Arm in reference with the propeller flange without spacer:

| Description          | Weight [kg] | Arm<br>[mt] | Moment |
|----------------------|-------------|-------------|--------|
| 25 - EQUIPMENT       |             |             |        |
| Artex ME406 ELT unit | 1.00        | 2.28        | 2.28   |